Skip to main content

The Cholesterol-Dependent Cytolysin Family of Gram-Positive Bacterial Toxins

  • Chapter
  • First Online:
Cholesterol Binding and Cholesterol Transport Proteins:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

The cholesterol-dependent cytolysins (CDCs) are a family of β-barrel pore-forming toxins secreted by Gram-positive bacteria. These toxins are produced as water-soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large β-barrel into the membrane (about 250 Å in diameter). Formation of such a large transmembrane structure requires multiple and coordinated conformational changes. The presence of cholesterol in the target membrane is absolutely required for pore-formation, and therefore it was long thought that cholesterol was the cellular receptor for these toxins. However, not all the CDCs require cholesterol for binding. Intermedilysin, secreted by Streptoccocus intermedius only binds to membranes containing a protein receptor, but forms pores only if the membrane contains sufficient cholesterol. In contrast, perfringolysin O, secreted by Clostridium perfringens, only binds to membranes containing substantial amounts of cholesterol. The mechanisms by which cholesterol regulates the cytolytic activity of the CDCs are not understood at the molecular level. The C-terminus of perfringolysin O is involved in cholesterol recognition, and changes in the conformation of the loops located at the distal tip of this domain affect the toxin-membrane interactions. At the same time, the distribution of cholesterol in the membrane can modulate toxin binding. Recent studies support the concept that there is a dynamic interplay between the cholesterol-binding domain of the CDCs and the excess of cholesterol molecules in the target membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDCs:

cholesterol-dependent cytolysins

PFO:

perfringolysin O

ILY:

intermedilysin

PLY:

pneumolysin

SLO:

streptolysin O

ALO:

anthrolysin

TMH/s:

transmembrane β-hairpin/s

D4:

domain 4

L1, L2, and L3:

loop 1, loop 2 and loop 3

References

  • Abdel Ghani, E. M., Weis, S., Walev, I., Kehoe, M., Bhakdi, S. and Palmer, M., 1999, Streptolysin O: inhibition of the conformational change during membrane binding of the monomer prevents oligomerization and pore formation. Biochemistry 38: 15204–15211.

    Article  CAS  PubMed  Google Scholar 

  • Alberti-Segui, C., Goeden, K. R. and Higgins, D. E., 2007, Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell. Microbiol. 9: 179–195.

    Article  CAS  PubMed  Google Scholar 

  • Alouf, J. E., Billington, S. J. and Jost, B. H., 2006, Repertoire and general features of the family of cholesterol-dependent cytolysins. In Alouf, J. E. and Popoff, M. R. (Eds.) The Comprehensive Sourcebook of Bacterial Protein Toxins. 3rd ed., pp. 643–658, Oxford, England, Academic Press.

    Google Scholar 

  • Alving, C. R., Habig, W. H., Urban, K. A. and Hardegree, M. C., 1979, Cholesterol-dependent tetanolysin damage to liposomes. Biochim. Biophys. Acta 551: 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Arrhenius, S., 1907. Immunochemistry. The application of the principles of physical chemistry to the study of the biological antibodies. New York, The Macmillian Company.

    Google Scholar 

  • Awad, M. M., Ellemor, D. M., Boyd, R. L., Emmins, J. J. and Rood, J. I., 2001, Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69: 7904–7910.

    Article  CAS  PubMed  Google Scholar 

  • Bavdek, A., Gekara, N. O., Priselac, D., Gutierrez Aguirre, I., Darji, A., Chakraborty, T., Macìœek, P., Lakey, J. H., Weiss, S. and Anderluh, G., 2007, Sterol and pH interdependence in the binding, oligomerization, and pore formation of listeriolysin O. Biochemistry 46: 4425–4437.

    Article  CAS  PubMed  Google Scholar 

  • Billington, S. J., Songer, J. G. and Jost, B. H., 2001, Molecular characterization of the pore-forming toxin, pyolysin, a major virulence determinant of Arcanobacterium pyogenes. Vet. Microbiol. 82: 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Bourdeau, R. W., Malito, E., Chenal, A., Bishop, B. L., Musch, M. W., Villereal, M. L., Chang, E. B., Mosser, E. M., Rest, R. F. and Tang, W.-J., 2009, Cellular functions and x-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J. Biol. Chem. 284: 14645–14656.

    Article  CAS  PubMed  Google Scholar 

  • Campanella, J., Bitincka, L. and Smalley, J., 2003, MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinf. 4: 29.

    Article  Google Scholar 

  • Cho, W. and Stahelin, R. V., 2005, Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34: 119–151.

    Article  CAS  PubMed  Google Scholar 

  • Columbus, L. and Hubbell, W. L., 2002, A new spin on protein dynamics. Trends Biochem. Sci. 27: 288–295.

    Article  CAS  PubMed  Google Scholar 

  • Cowell, J. L. and Bernheimer, A. W., 1978, Role of cholesterol in the action of cereolysin on membranes. Arch. Biochem. Biophys. 190: 603–610.

    Article  CAS  PubMed  Google Scholar 

  • Cowieson, N. P., Kobe, B. and Martin, J. L., 2008, United we stand: combining structural methods. Curr. Opin. Struct. Biol. 18: 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Czajkowsky, D. M., Hotze, E. M., Shao, Z. and Tweten, R. K., 2004, Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J. 23: 3206–3215.

    Article  CAS  PubMed  Google Scholar 

  • Dang, T. X., Hotze, E. M., Rouiller, I., Tweten, R. K. and Wilson-Kubalek, E. M., 2005, Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy. J. Struct. Biol. 150: 100–108.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, J. L. and Schlegel, R., 1975, Effect of streptolysin O on erythrocyte membranes, liposomes, and lipid dispersions. A protein-cholesterol interaction. J. Cell Biol. 67: 160–174.

    Article  CAS  PubMed  Google Scholar 

  • Epand, R. M., 2006, Cholesterol and the interaction of proteins with membrane domains. Prog. Lipid Res. 45: 279–294.

    Article  CAS  PubMed  Google Scholar 

  • Farrand, S., Hotze, E., Friese, P., Hollingshead, S. K., Smith, D. F., Cummings, R. D., Dale, G. L. and Tweten, R. K., 2008, Characterization of a streptococcal cholesterol-dependent cytolysin with a Lewis y and b Specific Lectin Domain. Biochemistry 47: 7097–7107.

    Article  CAS  PubMed  Google Scholar 

  • Flanagan, J. J., Heuck, A. P. and Johnson, A. E. (2002) Cholesterol-phospholipid interactions play an important role in perfringolysin O binding to membrane. FASEB J., 16, A929.

    Google Scholar 

  • Flanagan, J. J., Tweten, R. K., Johnson, A. E. and Heuck, A. P., 2009, Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding. Biochemistry 48: 3977–3987.

    Article  CAS  PubMed  Google Scholar 

  • Gekara, N. O., Jacobs, T., Chakraborty, T. and Weiss, S., 2005, The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol. 7: 1345–1356.

    Article  CAS  PubMed  Google Scholar 

  • Gelber, S. E., Aguilar, J. L., Lewis, K. L. T. and Ratner, A. J., 2008, Functional and phylogenetic characterization of vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J. Bacteriol. 190: 3896–3903.

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy, C. and Alouf, J. E., 1983, Selective purification by thiol-disulfide interchange chromatography of alveolysin, a sulfhydryl-activated toxin of Bacillus alvei. Toxin properties and interaction with cholesterol and liposomes. J. Biol. Chem. 258: 9968–9972.

    CAS  PubMed  Google Scholar 

  • Giddings, K. S., Johnson, A. E. and Tweten, R. K., 2003, Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc. Natl. Acad. Sci. USA 100: 11315–11320.

    Article  CAS  PubMed  Google Scholar 

  • Giddings, K. S., Johnson, A. E. and Tweten, R. K., 2006, Perfringolysin O and Intermedilysin: Mechanisms of Pore Formation by the Cholesterol-Dependent Cytolysins. In Alouf, J. E. and Popoff, M. R. (Eds.) The Comprehensive Sourcebook of Bacterial Protein Toxins. 3rd ed., pp. 671–679, Oxford, England, Academic Press.

    Google Scholar 

  • Giddings, K. S., Zhao, J., Sims, P. J. and Tweten, R. K., 2004, Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat. Struct. Mol. Biol. 11: 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, R. J., 2005, Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure (Camb.) 13: 1097–1106.

    Article  CAS  Google Scholar 

  • Gilbert, R. J. C., Rossjohn, J., Parker, M. W., Tweten, R. K., Morgan, P. J., Mitchell, T. J., Errington, N., Rowe, A. J., Andrew, P. W. and Byron, O., 1998, Self-interaction of pneumolysin, the pore-forming protein toxin of Streptococcus pneumoniae. J. Mol. Biol. 284: 1223–1237.

    Article  CAS  PubMed  Google Scholar 

  • Goñi, F. M., Alonso, A., Bagatolli, L. A., Brown, R. E., Marsh, D., Prieto, M. and Thewalt, J. L., 2008, Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids 1781: 665–684.

    Google Scholar 

  • Haberland, M. E. and Reynolds, J. A., 1973, Self-association of cholesterol in aqueous solution. Proc. Natl. Acad. Sci. USA 70: 2313–2316.

    Article  CAS  PubMed  Google Scholar 

  • Hadders, M. A., Beringer, D. X. and Gros, P., 2007, Structure of C8 α-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317: 1552–1554.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. R., 1988, Electron microscopy of cholesterol. Micron Microsc. Acta 19, 19–31.

    Article  CAS  Google Scholar 

  • Harris, J. R., Adrian, M., Bhakdi, S. and Palmer, M., 1998, Cholesterol-streptolysin O interaction: An EM study of wild-type and mutant streptolysin O. J. Struct. Biol. 121: 343–355.

    Article  CAS  PubMed  Google Scholar 

  • Harwood, C. R. and Cranenburgh, R., 2008, Bacillus protein secretion: an unfolding story. Trends Microbiol., 16, 73–79.

    CAS  PubMed  Google Scholar 

  • Heimburg, T., Angerstein, B. and Marsh, D., 1999, Binding of peripheral proteins to mixed lipid membranes: Effect of lipid demixing upon binding. Biophys. J. 76: 2575–2586.

    Article  CAS  PubMed  Google Scholar 

  • Heuck, A. P., Hotze, E. M., Tweten, R. K. and Johnson, A. E., 2000, Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol. Cell 6: 1233–1242.

    Article  CAS  PubMed  Google Scholar 

  • Heuck, A. P. and Johnson, A. E., 2002, Pore-forming protein structure analysis in membranes using multiple independent fluorescence techniques. Cell Biochem. Biophys. 36: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Heuck, A. P. and Johnson, A. E., 2005, Membrane recognition and pore formation by bacterial pore-forming toxins. In Tamm, L. K. (Ed.) Protein-Lipid Interactions. From Membrane Domains to Cellular Networks, pp. 165–188, Weinheim, Wiley-VCH.

    Google Scholar 

  • Heuck, A. P., Savva, C. G., Holzenburg, A. and Johnson, A. E., 2007, Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol. J. Biol. Chem. 282: 22629–22637.

    Article  CAS  PubMed  Google Scholar 

  • Heuck, A. P., Tweten, R. K. and Johnson, A. E., 2001, beta-Barrel pore-forming toxins: intriguing dimorphic proteins. Biochemistry 40: 9065–9073.

    Article  CAS  PubMed  Google Scholar 

  • Heuck, A. P., Tweten, R. K. and Johnson, A. E., 2003, Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J. Biol. Chem. 278: 31218–31225.

    Article  CAS  PubMed  Google Scholar 

  • Hotze, E. M., Heuck, A. P., Czajkowsky, D. M., Shao, Z., Johnson, A. E. and Tweten, R. K., 2002, Monomer-monomer interactions drive the prepore to pore conversion of a beta -barrel-forming cholesterol-dependent cytolysin. J. Biol. Chem. 277: 11597–11605.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. and Feigenson, G. W., 1999, A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76: 2142–2157.

    Article  CAS  PubMed  Google Scholar 

  • Hubbell, W. L., Cafiso, D. S. and Altenbach, C., 2000, Identifying conformational changes with site-directed spin labeling. Nat. Struct. Mol. Biol. 7: 735–739.

    Article  CAS  Google Scholar 

  • Jefferies, J., Nieminen, L., Kirkham, L.-A., Johnston, C., Smith, A. and Mitchell, T. J., 2007, Identification of a secreted cholesterol-dependent cytolysin (Mitilysin) from Streptococcus mitis. J. Bacteriol. 189: 627–632.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, A. E., 2005, Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6: 1078–1092.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. K., Geoffroy, C. & Alouf, J. E. (1980) Binding of cholesterol by sulfhydryl-activated cytolysins. Infect. Immun., 27, 97–101.

    CAS  PubMed  Google Scholar 

  • Kleinschmidt, J. H. (2006) Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers. Chem. Phys. Lipids, 141, 30–47.

    Article  CAS  PubMed  Google Scholar 

  • Lachapelle, S., Tweten, R. K. and Hotze, E. M., 2009, Intermedilysin-receptor interactions during assembly of the pore complex: assembly intermediates increase host cell susceptibility to complement-mediated lysis. J. Biol. Chem. 284: 12719–12726.

    Article  CAS  PubMed  Google Scholar 

  • Lange, Y., Cutler, H. B. and Steck, T. L., 1980, The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane. J. Biol. Chem. 255: 9331–9337.

    CAS  PubMed  Google Scholar 

  • Lange, Y. and Steck, T. L., 2008, Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog. Lipid Res. 47: 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Lange, Y., Ye, J. and Steck, T. L., 2005, Activation of membrane cholesterol by displacement from phospholipids. J. Biol. Chem. 280: 36126–36131.

    Article  CAS  PubMed  Google Scholar 

  • Lecuyer, H. and Dervichian, D. G., 1969, Structure of aqueous mixtures of lecithin and cholesterol. J. Mol. Biol. 45: 39–57.

    Article  CAS  PubMed  Google Scholar 

  • Madden, J. C., Ruiz, N. and Caparon, M., 2001, Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria. Cell 104: 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Marriott, H. M., Mitchell, T. J. and Dockrell, D. H., 2008, Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr. Mol. Med. 8: 497–509.

    Article  CAS  PubMed  Google Scholar 

  • Mason, P. R., Tulenko, T. N. and Jacob, R. F., 2003, Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochim. Biophys. Acta 1610: 198–207.

    Article  CAS  Google Scholar 

  • Mcconnell, H. M. and Radhakrishnan, A., 2003, Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610: 159–73.

    Article  CAS  PubMed  Google Scholar 

  • Meehl, M. A. and Caparon, M. G., 2004, Specificity of streptolysin O in cytolysin-mediated translocation. Mol. Microbiol. 52: 1665–1676.

    Article  CAS  PubMed  Google Scholar 

  • Mesmin, B. and Maxfield, F. R., 2009, Intracellular sterol dynamics. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids 1791: 636–645.

    CAS  Google Scholar 

  • Michel, E., Reich, K. A., Favier, R., Berche, P. and Cossart, P., 1990, Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol. Microbiol. 4: 2167–2178.

    Article  CAS  PubMed  Google Scholar 

  • Miller, C. J., Elliott, J. L. and Collier, R. J., 1999, Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38: 10432–10441.

    Article  CAS  PubMed  Google Scholar 

  • Mitsui, K., Sekiya, T., Okamura, S., Nozawa, Y. and Hase, J., 1979, Ring formation of perfringolysin O as revealed by negative stain electron microscopy. Biochim. Biophys. Acta 558: 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Mosser, E. and Rest, R., 2006, The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 6: 56.

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen, O. G. and Zuckermann, M. J., 2004, What’s so special about cholesterol? Lipids 39: 1101–1113.

    Article  CAS  PubMed  Google Scholar 

  • Murari, R., Murari, M. P. and Baumann, W. J., 1986, Sterol orientations in phosphatidylcholine liposomes as determined by deuterium NMR. Biochemistry 25: 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  • Nagamune, H., Ohkura, K., Sukeno, A., Cowan, G., Mitchell, T. J., Ito, W., Ohnishi, O., Hattori, K., Yamato, M., Hirota, K., Miyake, Y., Maeda, T. and Kourai, H., 2004, The human-specific action of intermedilysin, a homolog of streptolysin O, is dictated by domain 4 of the protein. Mol. Microbiol. 48: 677–692.

    CAS  Google Scholar 

  • Nagamune, H., Whiley, R. A., Goto, T., Inai, Y., Maeda, T., Hardie, J. M. and Kourai, H., 2000, Distribution of the intermedilysin gene among the anginosus group streptococci and correlation between intermedilysin production and deep-seated infection with Streptococcus intermedius. J. Clin. Microbiol. 38: 220–226.

    CAS  PubMed  Google Scholar 

  • Nakamura, M., Sekino, N., Iwamoto, M. and Ohno-Iwashita, Y., 1995, Interaction of .theta.-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion. Biochemistry 34: 6513–6520.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., Sekino-Suzuki, N., Mitsui, K.-I. and Ohno-Iwashita, Y., 1998, Contribution of tryptophan residues to the structural changes in perfringolysin O during interaction with liposomal membranes. J. Biochem. 123: 1145–1155.

    CAS  PubMed  Google Scholar 

  • Nelson, L. D., Johnson, A. E. and London, E., 2008, How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction J. Biol. Chem. 283: 4632–4642.

    Article  CAS  PubMed  Google Scholar 

  • Nollmann, M., Gilbert, R., Mitchell, T., Sferrazza, M. and Byron, O., 2004, The role of cholesterol in the activity of pneumolysin, a bacterial protein toxin. Biophys. J. 86: 3141–3151.

    Article  PubMed  Google Scholar 

  • Ohno-Iwashita, Y., Iwamoto, M., Ando, S. and Iwashita, S., 1992, Effect of lipidic factors on membrane cholesterol topology - mode of binding of θ-toxin to cholesterol in liposomes. Biochimica et Biophysica Acta 1109: 81–90.

    Article  CAS  PubMed  Google Scholar 

  • Ohno-Iwashita, Y., Iwamoto, M., Mitsui, K.-I., Ando, S. and Iwashita, S., 1991, A cytolysin, θ-toxin, preferentially binds to membrane cholesterol surrounded by phospholipids with 18-carbon hydrocarbon chains in cholesterol-rich region. J. Biochem. 110: 369–375.

    CAS  PubMed  Google Scholar 

  • Ohno-Iwashita, Y., Shimada, Y., Waheed, A., Hayashi, M., Inomata, M., Nakamura, M., Maruya, M. and Iwashita, M., 2004, Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 10: 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P. and Peter Slotte, J., 2002, Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41: 66–97.

    Article  PubMed  Google Scholar 

  • Olofsson, A., Hebert, H. and Thelestam, M., 1993, The projection structure of Perfringolysin O (Clostridium perfringens θ-toxin). FEBS Lett. 319: 125–127.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, M., 2004, Cholesterol and the activity of bacterial toxins. FEMS Microbiol. Lett. 238: 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, M., Harris, R., Freytag, C., Kehoe, M., Tranum-Jensen, J. and Bhakdi, S., 1998, Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J. 17: 1598–1605.

    Article  CAS  PubMed  Google Scholar 

  • Pinkney, M., Beachey, E. and Kehoe, M., 1989, The thiol-activated toxin streptolysin O does not require a thiol group for cytolytic activity. Infect. Immun. 57: 2553–2558.

    CAS  PubMed  Google Scholar 

  • Polekhina, G., Feil, S. C., Tang, J., Rossjohn, J., Giddings, K. S., Tweten, R. K. and Parker, M. W., 2006, Comparative three-dimensional structure of cholesterol-dependent cytolysins. In Alouf, J. E. and Popoff, M. R. (Eds.) The Comprehensive Sourcebook of Bacterial Protein Toxins. Third ed., pp. 659–670, Oxford, England, Academic Press.

    Google Scholar 

  • Polekhina, G., Giddings, K. S., Tweten, R. K. and Parker, M. W., 2005, Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc. Natl. Acad. Sci. USA 102: 600–605.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan, A. and Mcconnell, H. M., 1999, Condensed complexes of cholesterol and phospholipids. Biophys. J. 77: 1507–1517.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran, R., Heuck, A. P., Tweten, R. K. and Johnson, A. E., 2002, Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Mol. Biol. 9: 823–827.

    CAS  Google Scholar 

  • Ramachandran, R., Tweten, R. K. and Johnson, A. E., 2004, Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat. Struct. Mol. Biol. 11: 697–705.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran, R., Tweten, R. K. and Johnson, A. E., 2005, The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc. Natl. Acad. Sci. USA 102: 7139–7144.

    Article  CAS  PubMed  Google Scholar 

  • Rosado, C. J., Buckle, A. M., Law, R. H. P., Butcher, R. E., Kan, W.-T., Bird, C. H., Ung, K., Browne, K. A., Baran, K., Bashtannyk-Puhalovich, T. A., Faux, N. G., Wong, W., Porter, C. J., Pike, R. N., Ellisdon, A. M., Pearce, M. C., Bottomley, S. P., Emsley, J., Smith, A. I., Rossjohn, J., Hartland, E. L., Voskoboinik, I., Trapani, J. A., Bird, P. I., Dunstone, M. A. and Whisstock, J. C., 2007, A common fold mediates vertebrate defense and bacterial attack. Science 317: 1548–1551.

    Article  CAS  PubMed  Google Scholar 

  • Rosenqvist, E., Michaelsen, T. E. and Vistnes, A. I., 1980, Effect of streptolysin O and digitonin on egg lecithin/cholesterol vesicles. Biochim. Biophys. Acta 600: 91–102.

    Article  CAS  PubMed  Google Scholar 

  • Rossjohn, J., Feil, S. C., Mckinstry, W. J., Tweten, R. K. and Parker, M. W., 1997, Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89: 685–692.

    Article  CAS  PubMed  Google Scholar 

  • Rossjohn, J., Polekhina, G., Feil, S. C., Morton, C. J., Tweten, R. K. and Parker, M. W., 2007, Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J. Mol. Biol. 367: 1227–1236.

    Article  CAS  PubMed  Google Scholar 

  • Sankaram, M. B. and Thompson, T. E., 1991, Cholesterol-induced fluid-phase immiscibility in membranes. Proc. Natl. Acad. Sci. USA 88: 8686–8690.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, F. K., Mitchell, T. J., Walker, J. A., Andrew, P. W. and Boulnois, G. J., 1989, Pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae, does not require a thiol group for in vitro activity. Infect. Immun. 57: 2547–2552.

    CAS  PubMed  Google Scholar 

  • Schnupf, P. and Portnoy, D. A., 2007, Listeriolysin O: a phagosome-specific lysin. Microbes Infect. 9: 1176–1187.

    Article  CAS  PubMed  Google Scholar 

  • Sekino-Suzuki, N., Nakamura, M., Mitsui, K.-I. and Ohno-Iwashita, Y., 1996, Contribution of individual tryptophan residues to the structure and activity of θ-toxin (perfringolysin O), a cholesterol-binding cytolysin. Eur. J. Biochem. 241: 941–947.

    Article  CAS  PubMed  Google Scholar 

  • Shatursky, O., Heuck, A. P., Shepard, L. A., Rossjohn, J., Parker, M. W., Johnson, A. E. and Tweten, R. K., 1999, The mechanism of membrane insertion for a cholesterol-dependent cytolysin: A novel paradigm for pore-forming toxins. Cell 99: 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Shepard, L. A., Heuck, A. P., Hamman, B. D., Rossjohn, J., Parker, M. W., Ryan, K. R., Johnson, A. E. and Tweten, R. K., 1998, Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37: 14563–14574.

    Article  CAS  PubMed  Google Scholar 

  • Shepard, L. A., Shatursky, O., Johnson, A. E. and Tweten, R. K., 2000, The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39: 10284–10293.

    Article  CAS  PubMed  Google Scholar 

  • Simossis, V. A., Kleinjung, J. and Heringa, J., 2005, Homology-extended sequence alignment. Nucl. Acids Res. 33: 816–824.

    Article  CAS  PubMed  Google Scholar 

  • Solovyova, A. S., Nollmann, M., Mitchell, T. J. and Byron, O., 2004, The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O. Biophys. J. 87: 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Soltani, C. E., Hotze, E. M., Johnson, A. E. and Tweten, R. K., 2007a, Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J. Biol. Chem. 282: 15709–15716.

    Article  CAS  PubMed  Google Scholar 

  • Soltani, C. E., Hotze, E. M., Johnson, A. E. and Tweten, R. K., 2007b, Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc. Natl. Acad. Sci. USA 104: 20226–20231.

    Article  CAS  PubMed  Google Scholar 

  • Tamm, L. K., Hong, H. and Liang, B., 2004, Folding and assembly of beta-barrel membrane proteins. Biochim. Biophys. Acta 1666: 250–263.

    Article  CAS  PubMed  Google Scholar 

  • Tilley, S. J., Orlova, E. V., Gilbert, R. J., Andrew, P. W. and Saibil, H. R. (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121: 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Tweten, R. K., 2005, Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect. Immun. 73: 6199–6209.

    Article  CAS  PubMed  Google Scholar 

  • Tweten, R. K., Parker, M. W. and Johnson, A. E., 2001, The cholesterol-dependent cytolysins. Curr. Top. Microbiol. Immunol. 257: 15–33.

    CAS  PubMed  Google Scholar 

  • Valeva, A., Hellmann, N., Walev, I., Strand, D., Plate, M., Boukhallouk, F., Brack, A., Hanada, K., Decker, H. and Bhakdi, S., 2006, Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore. J. Biol. Chem. 281: 26014–26021.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Boland, J. A., Dominguez, L., Rodriguez-Ferri, E. F., Fernandez-Garayzabal, J. F. and Suarez, G., 1989, Preliminary evidence that different domains are involved in cytolytic activity and receptor (cholesterol) binding in listeriolysin O, the Listeria monocytogenes thiol-activated toxin. FEMS Microbiol. Lett. 53: 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Veatch, S. L. and Keller, S. L., 2002, Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89: 268101.

    Article  PubMed  CAS  Google Scholar 

  • Waheed, A., Shimada, Y., Heijnen, H. F. G., Nakamura, M., Inomata, M., Hayashi, M., Iwashita, S., Slot, J. W. and Ohno-Iwashita, Y., 2001, Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc. Natl. Acad. Sci. USA 98: 4926–4931.

    Article  CAS  PubMed  Google Scholar 

  • Walker, B., Krishnasastry, M., Zorn, L. and Bayley, H., 1992, Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. J. Biol. Chem. 267: 21782–21786.

    CAS  PubMed  Google Scholar 

  • White, S. H. and Wimley, W. C., 1999, Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28: 319–365.

    Article  CAS  PubMed  Google Scholar 

  • Zitzer, A., Westover, E. J., Covey, D. F. and Palmer, M., 2003, Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric cholesterol. FEBS Lett. 553: 229–231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by a Scientist Development Grant from the American Heart Association to A.P.H

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro P. Heuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heuck, A.P., Moe, P.C., Johnson, B.B. (2010). The Cholesterol-Dependent Cytolysin Family of Gram-Positive Bacterial Toxins. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_20

Download citation

Publish with us

Policies and ethics