Skip to main content

Insect Pests and Spiders in Oilseed Rape and Their Response to Site and Landscape Factors

  • Chapter
  • First Online:
Biocontrol-Based Integrated Management of Oilseed Rape Pests

Abstract

The abundance of the insect pests: pollen beetle (Meligethes aeneus), stem weevils (Ceutorhynchus napi, C. pallidactylus) and brassica pod midge (Dasineura brassicae), pest damage, species richness and activity density of spiders, and density, body size and offspring of the wolf spider, Pardosa agrestis, in oilseed rape fields relative to site and landscape factors were investigated. Abundances of pollen beetles and stem weevils were significantly positively correlated with soil quality and negatively related to oilseed rape area in the surroundings. Generally, abundances of all groups were positively related to woody areas. Damage by pollen beetle and pod midge was negatively correlated with rape area, damage by the stem weevils responded positively to soil index. Spider richness was positively related to woody areas at small spatial scale, spider density increased with length of road-side strips at large scale. Also, body size of P. agrestis was best explained by length of road-side strips and number of offspring increased as distance to woody areas decreased. Non-crop areas surrounding rape fields promoted both spider fitness and assemblages in rape fields, thus underlining the importance of these habitats for biological pest control. This may become particularly significant as future plans to boost biofuel production will drastically reduce non-crop areas in agricultural landscapes. Our finding that the spatial configuration of non-crop habitats favours predators indicates that landscape management strategies should focus on interspersing non-crop habitats within the matrix of arable fields in a way that distances between refuge or source habitats and arable fields are kept short.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford DV (ed.) (2003) Biocontrol of oilseed rape pests. Blackwell, Oxford, UK.

    Google Scholar 

  • Alford DV, Nilsson C, Ulber B (2003) Insect pests of oilseed rape crops. In: Alford DV (ed.) Biocontrol of oilseed rape pests. Blackwell, Oxford, UK.

    Chapter  Google Scholar 

  • Balfour RA, Buddle CM, Rypstra AL, Walker SE, Marshall SD (2003) Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecol Entomol 28: 25–30.

    Article  Google Scholar 

  • Bartlet E (1996) Chemical cues to host-plant selection by insect pests of oilseed rape. Agr Zool Rev 7: 89–116.

    Google Scholar 

  • Beck MW, Connor EF (1992) Factors affecting the reproductive success of the crab spider Misumenoides formosipes – the covariance between juvenile and adult traits. Oecologia 92: 287–295.

    Article  Google Scholar 

  • Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. B Entomol Res 95: 69–114.

    Article  CAS  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol Evol 18: 182–188.

    Article  Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. P Roy Soc Lond B Bio 273: 1715–1727.

    Article  CAS  Google Scholar 

  • BMLFUW (ed.) (2006) Grüner Bericht 2006. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna, Austria.

    Google Scholar 

  • Bolaños A (2003) Spider assemblages and habitat bindings in Central Europe. Verlag Agrarökologie, Bern.

    Google Scholar 

  • Cipollini DF, Bergelson J (2002) Interspecific competition affects growth and herbivore damage of Brassica napus in the field. Plant Ecol 162: 227–231.

    Article  Google Scholar 

  • Clough Y, Kruess A, Kleijn D, Tscharntke T (2005) Spider diversity in cereal fields: Comparing factors at local, landscape and regional scales. J Biogeogr 32: 2007–2014.

    Article  Google Scholar 

  • Cook SM, Smart LE, Martin JL, Murray DA, Watts NP, Williams IH (2006) Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomol Exp Appl 119: 221–229.

    Article  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14: 342–355.

    Article  Google Scholar 

  • Drapela T, Moser D, Zaller JG, Frank T (2008) Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31(2): 254–262.

    Article  Google Scholar 

  • Drapela T, Moser D, Zaller JG, Frank T (2009) Landscape affects activity density, body size and fecundity of the wolf spider Pardosa agrestis (Araneae, Lycosidae) in winter oilseed rape. Agric For Entomol (in revision).

    Google Scholar 

  • Frank T, Reichhart B (2004) Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. B Entomol Res 94: 209–217.

    Article  CAS  Google Scholar 

  • Free JB, Williams IH (1978) A survey of the damage caused to crops of oil-seed rape (Brassica napus L.) by insect pests in south-central England and their effect on seed yield. J Agr Sci 90: 417–424.

    Article  Google Scholar 

  • Free JB, Williams IH (1979) The distribution of insect pests on crops of oil-seed rape (Brassica napus L.) and the damage they cause. J Agr Sci 92: 139–149.

    Article  Google Scholar 

  • Frenzel M, Brandl R (1998) Diversity and composition of phytophagous insect guilds on Brassicaceae. Oecologia 113: 391–399.

    Article  Google Scholar 

  • Fritzsche R (1957) Zur Biologie und Ökologie der Rapsschädlinge aus der Gattung Meligethes. J Appl Entomol 40: 222–280.

    Google Scholar 

  • Gianessi LP, Marcelli MB (2000) Pesticide use in U.S. crop production: 1997. National Center for Food and Agricultural Policy, Washington, DC, USA.

    Google Scholar 

  • Halley JM, Thomas CFG, Jepson PC (1996) A model for the spatial dynamics of linyphiid spiders in farmland. J Appl Ecol 33: 471–492.

    Article  Google Scholar 

  • Hänggi A, Stöckli E, Nentwig W (1995) Habitats of Central European Spiders. Characterisation of the Habitats of the Most Abundant Spider Species of Central Europe and Associated Species. Centre suisse de cartographie de la faune, Neuchâtel.

    Google Scholar 

  • Hansen LM (2003) A model for determination of the numbers of pollen beetles (Meligethes aeneus F.) (Col., Nitidulidae) per plant in oil-seed rape crops (Brassica napus L.) by estimating the percentage of plants attacked by pollen beetles. J Appl Entomol 127: 163–166.

    Article  Google Scholar 

  • Hokkanen HMT (2000) The making of a pest: Recruitment of Meligethes aeneus onto oilseed Brassicas. Entomol Exp Appl 95: 141–149.

    Article  Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area relationship. Ecology 80: 1495–1504.

    Google Scholar 

  • Isaia M, Bona F, Badino G (2006) Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards of Langa Astigiana (northwest Italy). Environ Entomol 35: 297–307.

    Article  Google Scholar 

  • Kareiva P (1990) Population-dynamics in spatially complex environments – theory and data. Philos T Roy Soc Lond Ser B 330: 175–190.

    Article  Google Scholar 

  • Kiss B, Samu F (2005) Life history adaptation to changeable agricultural habitats: Developmental plasticity leads to cohort splitting in an agrobiont wolf spider. Environ Entomol 34: 619–626.

    Article  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264: 1581–1584.

    Article  PubMed  CAS  Google Scholar 

  • Kruess A, Tscharntke T (2000) Effects of habitat fragmentation on plant insect communities. In: Ekbom B, Irwin ME, Robert Y (eds.) Interchanges of insects between agricultural and surrounding landscapes. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Landis DA, Wratten SR, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45: 175–201.

    Article  PubMed  CAS  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 139: 1–10.

    Article  PubMed  Google Scholar 

  • Lethmayer C, Nentwig W, Frank T (1997) Effects of weed strips on the occurrence of noxious coleopteran species (Nitidulidae, Chrysomelidae, Curculionidae). J Plant Dis Prot 104: 75–92.

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Losey JE, Denno RF (1999) Factors facilitating synergistic predation: The central role of synchrony. Ecol Appl 9: 378–386.

    Article  Google Scholar 

  • Marc P, Canard A (1997) Maintaining spider biodiversity in agroecosystems as a tool in pest control. Agr Ecosyst Environ 62: 229–235.

    Article  Google Scholar 

  • Menalled FD, Marino PC, Gage SH, Landis DA (1999) Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol Appl 9: 634–641.

    Article  Google Scholar 

  • Moser D, Drapela T, Zaller JG, Frank T (2009) Interacting effects of wind direction and resource distribution on rape pest species abundance. Basic Appl Ecol 10: 208–215.

    Google Scholar 

  • Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: A comparison of European and US studies. Agr Ecosyst Environ 95: 579–612.

    Article  Google Scholar 

  • Öberg S, Ekbom B, Bommarco R (2007) Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agr Ecosyst Environ 122: 211–219.

    Article  Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J (2001a) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2: 365–371.

    Article  Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J, Weibull A-C (2001b) Landscape complexity and farming practice influence the condition of polyphagous carabid beetles. Ecol Appl 11: 480–488.

    Article  Google Scholar 

  • Paul VH (2003) Raps. Krankheiten – Schädlinge – Schadpflanzen. Verlag Th. Mann, Gelsenkirchen-Buer.

    Google Scholar 

  • Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agr Ecosyst Environ 78: 215–222.

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML (1995) Landscape ecology – spatial heterogeneity in ecological systems. Science 269: 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Ann Rev Ecol Syst 28: 289–316.

    Article  Google Scholar 

  • Prasifka JR, Heinz KM, Minzenmayer RR (2004) Relationships of landscape, prey and agronomic variables to the abundance of generalist predators in cotton (Gossypium hirsutum) fields. Landscape Ecol 19: 709–717.

    Article  Google Scholar 

  • Pywell RF, James KL, Herbert I, Meek WR, Carvell C, Bell D, Sparks TH (2005) Determinants of overwintering habitat quality for beetles and spiders on arable farmland. Biol Conserv 123: 79–90.

    Article  Google Scholar 

  • Richter CJJ (1970) Aerial dispersal in relation to habitat in eight wolf spider species (Pardosa, Araneae, Lycosidae). Oecologia 5: 200–214.

    Article  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386: 710–713.

    Article  CAS  Google Scholar 

  • Samu F, Sunderland KD, Szinetár C (1999) Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: A review. J Arachnol 27: 325–332.

    Google Scholar 

  • Samu F, Szinetár C (2002) On the nature of agrobiont spiders. J Arachnol 30: 389–402.

    Article  Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42: 281–287.

    Article  Google Scholar 

  • Schmidt MH, Tscharntke T (2005a) The role of perennial habitats for Central European farmland spiders. Agr Ecosyst Environ 105: 235–242.

    Article  Google Scholar 

  • Schmidt MH, Tscharntke T (2005b) Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J Biogeogr 32: 467–473.

    Article  Google Scholar 

  • Schmutterer H (1956) Zur Lebensweise und Bekämpfung des Großen Rapsstengelrüsslers Ceutorhynchus napi (Gyll.). Z Angew Entomol 39: 302–315.

    Article  CAS  Google Scholar 

  • Schneider DC (1994) Quantitative ecology: Spatial and temporal scaling. Academic Press, New York.

    Google Scholar 

  • Schweiger O, Maelfait JP, Van Wingerden W, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Frenzel M, Herzog F, Liira J, Roubalova M, Bugter R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42: 1129–1139.

    Article  Google Scholar 

  • Sunderland K, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: A review. Entomol Exp Appl 95: 1–13.

    Article  Google Scholar 

  • Symondson W, Sunderland K, Greenstone M (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47: 561–594.

    Article  PubMed  CAS  Google Scholar 

  • Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid-parasitoid interactions. P Roy Soc Lond B Bio 272: 203–210.

    Article  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101: 18–25.

    Article  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285: 893–895.

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Jepson P (1997) Field-scale effects of farming practices on linyphiid spider populations in grass and cereals. Entomol Exp Appl 84: 59–69.

    Article  Google Scholar 

  • Tischendorf L, Grez A, Zaviezo T, Fahrig L (2005) Mechanisms affecting population density in fragmented habitat. Ecol Soc 10: 7 [online] URL: http://www.ecologyandsociety.org/vol10/iss11/art17/

  • Topping C (1999) An individual-based model for dispersive spiders in agroecosystems: Simulations of the effects of landscape structure. J Arachnol 27: 378–386.

    Google Scholar 

  • Topping CJ, Sunderland KD (1994) A spatial population-dynamics model for Lepthyphantes tenuis (Araneae, Linyphiidae) with some simulations of the spatial and temporal effects of farming operations and land-use. Agr Ecosyst Environ 48: 203–217.

    Article  Google Scholar 

  • Tscharntke T, Kruess A (1999) Habitat fragmentation and biological control. In: Hawkins B and Cornell H (eds.) Theoretical approaches to biological control. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Uetz GW (1991) Habitat structure and spider foraging. In: Bell SS, McKoy ED, Mushinsky HR (eds.) Habitat structure: The physical arrangement of objects in space. Chapman and Hall, London.

    Google Scholar 

  • Uetz GW, Papke R, Kilinc B (2002) Influence of feeding regime on body size, body condition and a male secondary sexual character in Schizocosa ocreata wolf spiders (Araneae, Lycosidae): Condition-dependence in a visual signaling trait. J Arachnol 30: 461–469.

    Article  Google Scholar 

  • Walters KFA, Young JEB, Kromp B, Cox PD (2003) Management of oilseed rape pests. In: Alford DV (ed.) Biocontrol of oilseed rape insect pests. Blackwell, Oxford, UK.

    Google Scholar 

  • Weibull A-C, Östman Ö, Granqvist A (2003) Species richness in agroecosystems: The effect of landscape, habitat and farm management. Biodivers Conserv 12: 1335–1355.

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3: 385–397.

    Article  Google Scholar 

  • Wise DH, Wagner JD (1992) Evidence of exploitative competition among young stages of the wolf spider Schizocosa ocreata. Oecologia 91: 7–13.

    Google Scholar 

  • Wissinger SA (1997) Cyclic colonization in predictably ephemeral habitats: A template for biological control in annual crop systems. Bio Control 10: 4–15.

    Article  Google Scholar 

  • With KA, Cadaret SJ, Davis C (1999) Movement responses to patch structure in experimental fractal landscapes. Ecology 80: 1340–1353.

    Article  Google Scholar 

  • Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2008a) Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic Appl Ecol 9: 682–690.

    Article  Google Scholar 

  • Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2008b) Effect of within-field and landscape factors on insect damage in winter oilseed rape. Agr Ecosyst Environ 123: 233–238.

    Article  Google Scholar 

  • Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2009) Parasitism of stem weevils and pollen beetles in winter oilseed rape is differentially affected by site and landscape characteristics. Biocontrol 54: 505–514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Frank, T., Drapela, T., Moser, D., Zaller, J.G. (2010). Insect Pests and Spiders in Oilseed Rape and Their Response to Site and Landscape Factors. In: Williams, I. (eds) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3983-5_10

Download citation

Publish with us

Policies and ethics