Skip to main content

Insights into the Life Styles of Pseudomonas stutzeri

  • Chapter
  • First Online:
Pseudomonas

Abstract

For many years, Pseudomonas stutzeri has been a model microorganism for studying the biochemical and physiological properties of a bacterium with enormous metabolic capacities. Denitrification – the ability to grow anaerobically with nitrate as a terminal electron acceptor – was discovered in this species. This characteristic was elucidated by dissecting the biochemistry and genetics of the ZoBell strain. This strain has also been studied for its natural transformation ability. At the same time, its phenotypic and genotypic diversity has led to novel concepts in the bacterial taxonomy. The knowledge of its ecological properties makes it a good model organism for studying bacterial evolution. Today, modern techniques based on the analysis of its genome provide novel tools for deciphering the natural history of this species. This chapter presents the current knowledge of the biology and ecology of Pseudomonas stutzeri from an evolutionary point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cladera, A.M., Bennasar, A., Barceló, M., Lalucat, J. and García-Valdés, E. (2004) Comparative genetic diversity of Pseudomonas stutzeri genomovars, clonal structure, and phylogeny of the species. J. Bacteriol. 186: 5239–5248.

    Article  CAS  PubMed  Google Scholar 

  2. Lalucat, J., Bennasar, A., Bosch, R., García-Valdés, E. and Palleroni, N.J. (2006) Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev. 70: 510–547.

    Article  CAS  PubMed  Google Scholar 

  3. Kiil, K., Binnewies, T.T., Willenbrock, H., Hansen, S.K., Yang, L., Jelsbak, L., Ussery, D.W. and Friis, C. (2008) Comparative genomics of Pseudomonas, Chapter 1. In B.H.A. Rehm (ed.), Pseudomonas: model organism, pathogen, cell factory. Willey-VCH, Germany.

  4. Cladera, A.M., Sepúlveda, L.C., Valens-Vadell, M., Meyer, J.M., Lalucat, J. and García-Valdés, E. (2006) A detailed phenotypic and genotypic description of Pseudomonas strain OX1. Syst. Appl. Microbiol. 29: 422–430.

    Article  CAS  PubMed  Google Scholar 

  5. Mulet, M., Gomila, M., Gruffaz, C., Meyer, J.-M., Palleroni, N.J., Lalucat, J. and García-Valdés, E. (2008) Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri: description of a novel genomovar. Int. J. Syst. Evol. Microbiol. 58: 2309–2315.

    Article  CAS  PubMed  Google Scholar 

  6. Romanenko, L.A., Uchino, M., Falsen, E., Lysenko, A.M., Zhukova, N.V. and Mikhailov, V.V. (2005) Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J. Gen. Appl. Microbiol. 51: 65–71.

    Article  CAS  PubMed  Google Scholar 

  7. Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P. and Tiedje, J.M. (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81–91.

    Article  CAS  PubMed  Google Scholar 

  8. Majewski, J. and Cohan, F.M. (1999) DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153: 1525–1533.

    CAS  PubMed  Google Scholar 

  9. Majewski, J. and Cohan, F.M. (1998) The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148: 13–18.

    CAS  PubMed  Google Scholar 

  10. Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S. and Koonin, E.V. (2001) Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 11: 356–372.

    Article  CAS  PubMed  Google Scholar 

  11. Zawadzki, P., Roberts, M.S. and Cohan, F.M. (1995) The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140: 917–932.

    CAS  PubMed  Google Scholar 

  12. Gogarten, J.P., Doolittle, W.F. and Lawrence, J.G. (2002) Prokaryotic evolution in light of gene transfer. Mol. Evol. Biol. 19: 2226–2238.

    CAS  Google Scholar 

  13. Lewis, T.A., Cortese, M.S., Sebat, J.L., Green, T.L., Lee, C.H. and Crawford, R.L. (2000) A Pseudomonas stutzeri gene cluster encoding the biosynthesis of CCl4 dechlorination agent pyridine-2-6-bis(thiocarboxylic acid). Environ. Microbiol. 4: 407–416.

    Article  CAS  Google Scholar 

  14. Yan, Y., Yang, J., Dou, Y., et al. (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. PNAS 105: 7564–7569.

    Article  CAS  PubMed  Google Scholar 

  15. Vodovar, N., Vallenet, D., Cruveiller, S., et al. (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 24: 673–679.

    Article  CAS  PubMed  Google Scholar 

  16. Nojiri, H., Shintani, M. and Omori, T. (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl. Microbiol. Biotechnol. 64: 154–174.

    Article  CAS  PubMed  Google Scholar 

  17. Bosch, R., Garcia-Valdes, E. and Moore, E.R.B. (1999) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236: 149–157.

    Article  CAS  PubMed  Google Scholar 

  18. Bosch, R., García-Valdés, E. and Moore, E.R.B. (2000) Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene 245: 65–74.

    Article  CAS  PubMed  Google Scholar 

  19. Christie-Oleza, J.A., Nogales, B., Martín-Cardona, C., Lanfranconi, M.P., Albertí, S., Lalucat, J. and Bosch, R. (2008) ISPst9, an ISL3-like insertion sequence from Pseudomonas stutzeri AN10 involved in catabolic gene inactivation. Int. Microbiol. 11: 101–110.

    CAS  PubMed  Google Scholar 

  20. Coleman, N.V. and Holmes, A.J. (2005) The native Pseudomonas stutzeri strain Q chromosomal integron can capture and express cassette associated genes. Microbiology 151: 1853–1864.

    Article  CAS  PubMed  Google Scholar 

  21. Holmes, A.J., Gillings, M.R., Nield, B.C., Mabbutt, B.C., Nevalainen, K.M.H. and Stokes, H.W. (2003) The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ. Microbiol. 5: 383–394.

    Article  CAS  PubMed  Google Scholar 

  22. Rediers, H., Bonnecarrere, V., Rainey, P.B., Hamonts, K., Vanderleyden, J. and De Mot, R. (2003) Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl. Environ. Microbiol. 69: 6864–6874.

    Article  CAS  PubMed  Google Scholar 

  23. Puente, M.E. and Bashan, Y. (1994) The desert epiphyte Tillandsia recurvata harbours the nitrogen-fixing bacterium Pseudomonas stutzeri. Can. J. Bot. 72: 406–408.

    Article  Google Scholar 

  24. Zawadzka, A.M., Vandecasteele, F.P.J., Crawford, R.L. and Paszczynski, A. (2006) Identification of siderophores of Pseudomonas stutzeri. Can. J. Microbiol. 52: 1164–1176.

    Article  CAS  PubMed  Google Scholar 

  25. Aguilar, J.R.P., Cabriales, J.J.P. and Vega, M.M. (2008) Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a Tannery. Int. J. Phytoremediation 10: 359–370.

    Article  CAS  Google Scholar 

  26. Pedersen, K. (1997) Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20: 399–414.

    Article  CAS  Google Scholar 

  27. Criddle, C.S., DeWitt, J.T., Grbic-Galic, D. and McCarty, P.L. (1990) Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246.

    CAS  PubMed  Google Scholar 

  28. Sepúlveda-Torres, L.C., Zhou, J.Z., Guasp, C., Lalucat, J., Knaebel, D., Plank, J.L. and Criddle, C.S. (2001) Pseudomonas sp strain KC represents a new genomovar within Pseudomonas stutzeri. Int. J. Syst. Evol. Microbiol. 51: 2013–2019.

    PubMed  Google Scholar 

  29. Dybas, M.J., Tatara, G.M. and Criddle, C.S. (1995) Localization and characterization of the carbon-tetrachloride transformation activity of Pseudomonas sp. strain KC. Appl. Environ. Microbiol. 61: 758–762.

    CAS  PubMed  Google Scholar 

  30. Lee, C.H., Lewis, T.A., Paszczynski, A. and Crawford, R.L. (1999) Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem. Biophys. Res. Commun. 261: 562–566.

    Article  CAS  PubMed  Google Scholar 

  31. Lewis, T.A. and Crawford, R.L. (1993) Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC. Appl. Environ. Microbiol. 59: 1635–1641.

    CAS  PubMed  Google Scholar 

  32. Sepúlveda-Torres, L.C., Rajendran, N., Dybas, M.J. and Criddle, C.S. (1999) Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch. Microbiol. 171: 424–429.

    Article  PubMed  Google Scholar 

  33. Tatara, G.M., Dybas, M.J. and Criddle, C.S. (1993) Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC. Appl. Environ. Microbiol. 59: 2126–2131.

    CAS  PubMed  Google Scholar 

  34. Mira, A., Ochman, H. and Moran, N.A. (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet. 17: 589–596.

    Article  CAS  PubMed  Google Scholar 

  35. Hyndman, D.W., Dybas, M.J., Forney, L., et al. (2001) Hydraulic characterization and design of a full scale biocurtain. Ground Water 38: 462–474.

    Article  Google Scholar 

  36. Johnsson, A., Arlinger, J., Ödegaard-Jensen, A., Albinsson, Y. and Pedersen, K. (2006) Solid-phase partitioning of radionucleides by complexing compounds excreted by subsurface bacteria. Geomicrobiol. J. 23: 621–630.

    Article  CAS  Google Scholar 

  37. Essén, S.A., Johnsson, A., Bylund, D., Pedersen, K. and Lundström, U.S. (2007) Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl. Environ. Microbiol. 73: 5857–5864.

    Article  PubMed  Google Scholar 

  38. Naganuma, T., Sato, M., Hoshii, D., Amano-Murakami, Y., Iwatsuki, T. and Mandernack, K. (2006) Isolation and characterization of Pseudomonas strains capable of Fe(III) reduction with reference to redox response regulator genes. Geomicrobiol. J. 23: 145–155.

    Article  CAS  Google Scholar 

  39. Pedersen, K. (2002) Microbial processes in the disposal of high level radioactive waste 500 m underground in Fennoscandian shield rocks, pp. 279–311. In M.J. Keith-Roach and F.R. Livens (eds.), Interactions of microorganisms with radionuclides. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  40. Zobell, C.E. and Upham, H.C. (1944) A list of marine bacteria including description of sixty species. Bull. Scripps Inst. Oceanogr. 5: 239–292.

    Google Scholar 

  41. Rosselló-Mora, R.A., García-Valdés, E. and Lalucat, J. (1993) Taxonomic relationship between Pseudomonas perfectomarina ZoBell and Pseudomonas stutzeri. Int. J. Syst. Bacteriol. 43: 852–854.

    Article  Google Scholar 

  42. Ward, B.B. and Cockcroft, A.R. (1993) Immunofluorescencens detection of the denitrifying strain Pseudomonas stutzeri (ATCC 14405) in sea water and intertidal sediment environments. Microb. Ecol. 25: 233–246.

    Article  Google Scholar 

  43. Zumft, W.G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533–616.

    CAS  PubMed  Google Scholar 

  44. García-Valdés, E., Cózar, E., Rotger, R., Lalucat, J. and Ursing, J. (1988) New naphthalene-degrading marine Pseudomonas strains. Appl. Environ. Microbiol. 54: 2478–2485.

    PubMed  Google Scholar 

  45. Rosselló, R., García-Valdés, E., Lalucat, J. and Ursing, J. (1991) Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst. Appl. Microbiol. 14: 150–157.

    Google Scholar 

  46. García-Valdés, E., Cozar, E., Lalucat, J. and Rotger, R. (1989) Molecular cloning of aromatic degradative genes from Pseudomonas stutzeri. FEMS Microbiol. 61: 301–306.

    Google Scholar 

  47. Rosselló-Mora, R.A., Lalucat, J. and García-Valdés, E. (1994) Comparative biochemical and genetic-analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl. Environ. Microbiol. 60: 966–972.

    PubMed  Google Scholar 

  48. Bosch, R., Moore, E.R.B., García-Valdés, E. and Pieper, D.H. (1999) NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J. Bacteriol. 181: 2315–2322.

    CAS  PubMed  Google Scholar 

  49. Lane, D.J., Harrison, A.P., Stahl, D.J., Pace, B., Giovannoni, S.J., Olsen, G.J. and Pace, N.R. (1992) Evolutionary relationships among sulfur- and iron-oxidizing Eubacteria. J. Bacteriol. 174: 269–278.

    CAS  PubMed  Google Scholar 

  50. Ruby, E.G., Wirsen, C.O. and Jannasch, W. (1981) Chemolithotrophic sulfur-oxidizing bacteria from the galapagos rift hydrotermal vents. Appl. Environ. Microbiol. 42: 317–324.

    CAS  PubMed  Google Scholar 

  51. Sorokin, D.Y., Teske, A., Robertson, L.A. and Kuenen, J.G. (1999) Anaerobic oxidation of thiosulphate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri complex. Microb. Ecol. 30: 113–123.

    Article  CAS  Google Scholar 

  52. Amachi, S., Kawaguchi, N., Muramatsu, Y., Tsuchiya, S., Watanabe, Y., Shinoyama, H. and Fujii, T. (2007) Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Appl. Environ. Microbiol. 73: 5725–5730.

    Article  CAS  PubMed  Google Scholar 

  53. Tsunogai, S. and Sase, T. (1969) Formation of iodide–iodine in the ocean. Deep-Sea Res. 16: 489–496.

    CAS  Google Scholar 

  54. Plumley, F.G., Wei, Z.Y., Toivanen, T.B., Doucette, G.J. and Franca, S. (1999) Tn5 mutagenesis of Pseudomonas stutzeri SF/PS, a bacterium associated with Alexandrium lusitanicum (Dinophyceae) and paralytic shellfish poisoning. J. Phycol. 35: 1390–1396.

    Article  CAS  Google Scholar 

  55. Goetz, A., Yu, V.L., Hanchett, J.E. and Rihs, J.D. (1983) Pseudomonas stutzeri bacteremia associated with hemodialysis. Arch. Intern. Med. 143: 1909–1912.

    Article  CAS  PubMed  Google Scholar 

  56. Noble, R.C. and Overman, S.B. (1994) Pseudomonas stutzeri infection: a review of hospital isolates and a review of the literature. Diagn. Microbiol. Dis. 19: 51–56.

    Article  CAS  Google Scholar 

  57. Yan, J.J., Hsueh, P.R., Ko, W.C., Luh, K.T., Tsai, S.H., Wu, H.M. and Wu, J.J. (2001) Metallo-ß-lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob. Agents Chemother. 45: 2224–2228.

    Article  CAS  PubMed  Google Scholar 

  58. Sikorski, J., Möhle, M. and Wackernagel, W. (2002) Identification of complex composition, strong strain diversity and directional selection in local Pseudomonas stutzeri populations from marine sediments and soil. Environ. Microbiol. 4: 465–476.

    Article  CAS  PubMed  Google Scholar 

  59. Cladera, A.M., García-Valdés, E. and Lalucat, J. (2006) Genotype versus phenotype in the circumscription of bacterial species: the case of Pseudomonas stutzeri and P. chloritidismutans. Arch. Microbiol. 184: 353–361.

    Article  CAS  PubMed  Google Scholar 

  60. Coates, J.D. and Achenbach, L.A. (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat. Rev. Microbiol. 2: 569–580.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Lalucat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

García-Valdés, E., Mulet, M., Lalucat, J. (2010). Insights into the Life Styles of Pseudomonas stutzeri . In: Ramos, J., Filloux, A. (eds) Pseudomonas. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3909-5_6

Download citation

Publish with us

Policies and ethics