Skip to main content

Uptake of Xenobiotics from Polluted Waters by Plants

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

Abstract

An overview on phytoremediation is presented, which includes basic definitions, advantages and potential drawbacks as well as information about recent developments in this field of research and applications, especially in the area of decontamination and cleaning of organic xenobiotics containing industrial and agricultural wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, P. R., Summerfelt, S. T., Glenn, D. M., & Takeda, F. (2003). Mechanistic approach to phytoremediation of water. Ecological Engineering, 20(3), 251-264.

    Article  Google Scholar 

  • Akratos, C. S., Papaspyros, J. N. E., & Tsihrintzis, V. A. (2008). An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 143(1-3), 96-110.

    Article  CAS  Google Scholar 

  • Aubert, S., & Schwitzguebel, J. P. (2004). Screening of plant species for the phytotreatment of wastewater containing sulphonated anthraquinones. Water Research, 38(16), 3569-3575.

    Article  CAS  Google Scholar 

  • Barea, J. M., Pozo, M. J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761-1778.

    Article  CAS  Google Scholar 

  • Belmont, M. A., Ikonomou, M., & Metcalfe, C. D. (2006). Presence of nonylphenol ethoxylate surfactants in a watershed in central Mexico and removal from domestic sewage in a treatment wetland. Environmental Toxicology and Chemistry, 25(1), 29-35.

    Article  CAS  Google Scholar 

  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environmental Science and Technology, 43(3), 597-603.

    Article  CAS  Google Scholar 

  • Berken, A., Mulholland, M. M., LeDuc, D. L., & Terry, N. (2002). Genetic engineering of plants to enhance selenium phytoremediation. Critical Reviews in Plant Sciences, 21(6), 567-582.

    Article  CAS  Google Scholar 

  • Best, E. P. H., Sprecher, S. L., Larson, S. L., Fredrickson, H. L., & Bader, D. F. (1999). Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere, 38(14), 3383-3396.

    Article  CAS  Google Scholar 

  • Brasil, M. D., de Matos, A. T., Silva, C. M., Cecon, P. R., & Soares, A. A. (2007). Modeling of pollution removal in constructed wetlands with horizontal subsurface flow. Agrartechnische Forschung-Agricultural Engineering Research, 13(2), 48-56.

    Google Scholar 

  • Brix, H. (1999). How ‘green’ are aquaculture, constructed wetlands and conventional wastewater treatment systems? Water Science and Technology, 40(3), 45-50.

    Article  CAS  Google Scholar 

  • Brown, K. S. (1995). The green clean. BioScience, 45, 579-582.

    Article  Google Scholar 

  • Campos, V. M., Merino, I., Casado, R., Pacios, L. F., & Gomez, L. (2008). Phytoremediation of organic pollutants. Spanish Journal of Agricultural Research, 6, 38-47.

    Google Scholar 

  • Caselles-Osorio, A., & Garcia, J. (2006). Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter. Water Research, 40(19), 3603-3611.

    Article  CAS  Google Scholar 

  • Chappell, J. (1997). Phytoremediation of TCE Using Populus. Status report prepared for the US EPA Technology Innovation Office under a National Network of Environmental Management Studies Fellowship, pp. 1-38.

    Google Scholar 

  • Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research, 12(1), 34-48.

    Article  CAS  Google Scholar 

  • Chen, M. J., Guo, Z. L., Wang, K. Y., Zhang, Z., Xiangping, G., & Weimu, W. (2007). Study on the purification and recycling of livestock wastewater by aquicultural plants. Effective Utilization of Agricultural Soil and Water Resources and Protection of Environment, pp. 635-639.

    Google Scholar 

  • Chu, W. K., Wong, M. H., & Zhang, J. (2006). Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: II. Enzyme study. Environmental Geochemistry and Health, 28(1-2), 169-181.

    Article  CAS  Google Scholar 

  • Coleman, J. O. D., Frova, C., Schroder, P., & Tissut, M. (2002). Exploiting plant metabolism for the phytoremediation of persistent herbicides. Environmental Science and Pollution Research, 9(1), 18-28.

    Article  CAS  Google Scholar 

  • Collins, C., Laturnus, F., & Nepovim, A. (2002). Remediation of BTEX and trichloroethene - Current knowledge with special emphasis on phytoremediation. Environmental Science and Pollution Reseach, 9(1), 86-94.

    Article  CAS  Google Scholar 

  • Cui, L. H., Liu, W., Zhu, X. Z., Ma, M., Huang, X. H., & Xia, Y. Y. (2006). Performance of hybrid constructed wetland systems for treating septic tank effluent. Journal of Environmental Sciences - China, 18(4), 665-669.

    CAS  Google Scholar 

  • Davies, L. C., Carias, C. C., Novais, J. M., & Martins-Dias, S. (2005). Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecological Engineering, 25(5), 594-605.

    Article  Google Scholar 

  • Dixon, A., Simon, M., & Burkitt, T. (2003). Assessing the environmental impact of two options for smallscale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach. Ecological Engineering, 20(4), 297-308.

    Article  Google Scholar 

  • Dominguez-Rosado, E., & Pichtel, J. (2004). Phytoremediation of soil contaminated with used motor oil: II. Greenhouse studies. Environmental Engineering Science, 21(2), 169-180.

    Article  CAS  Google Scholar 

  • Ebel, M., Evangelou, M. W. H., & Schaeffer, A. (2007). Cyanide phytoremediation by water hyacinths (Eichhornia crassipes). Chemosphere, 66(5), 816-823.

    Article  CAS  Google Scholar 

  • El Hamouri, B., Nazih, J., & Lahjouj, J. (2007). Sub surface-horizontal flow constructed wetland for sewage treatment under Moroccan climate conditions. Desalination, 215(1-3), 153-158.

    Article  CAS  Google Scholar 

  • EPA. (2000). Introduction to phytoremediation. EPA 600-R-99-107.

    Google Scholar 

  • Forni, C., Cascone, A., Fiori, M., & Migliore, L. (2002). Sulphadimethoxine and Azolla filiculoides Lam.: A model for drug remediation. Water Research, 36(13), 3398-3403.

    Article  CAS  Google Scholar 

  • Gianfreda, L., & Nannipieri, P. (2001). Basic principles, agents and feasibility of bioremediation of soil polluted by organic compounds. Minerva Biotechnologica, 13(1), 5-12.

    Google Scholar 

  • Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme and Microbial Technology, 35(4), 339-354.

    Article  CAS  Google Scholar 

  • Gustavsson, L., Hollert, H., Jonsson, S., van Bavel, B., & Engwall, M. (2007). Reed beds receiving industrial sludge containing nitroaromatic compounds - effects of outgoing water and bed material extracts in the umu-C genotoxicity assay, DR-CALUX assay and on early life stage development in Zebrafish (Danio rerio). Environmental Science and Pollution Research, 14(3), 202-211.

    Article  CAS  Google Scholar 

  • Haberl, R., Grego, S., Langergraber, G., Kadlec, R. H., Cicalini, A. R., Martins Dias, S., et al. (2003). Constructed wetlands for the treatment of organic pollutants. JSS - Journal of Soils and Sediments, 3(2), 109-124.

    Article  CAS  Google Scholar 

  • Hannink, N. K., Rosser, S. J., & Bruce, N. C. (2002). Phytoremediation of explosives. Critical Reviews in Plant Sciences, 21(5), 511-538.

    Article  CAS  Google Scholar 

  • Harvey, P. J., Campanella, B. F., Castro, P. M. L., Harms, H., Lichtfouse, E., Schaffner, A. R., et al. (2002). Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environmental Science and Pollution Research, 9(1), 29-47.

    Article  CAS  Google Scholar 

  • Healy, M. G., Rodgers, M., & Mulqueen, J. (2007). Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresource Technology, 98(12), 2268-2281.

    Article  CAS  Google Scholar 

  • Heaton, A. C. P., Rugh, C. L., Hang, N. J., & Meagher, R. B. (1998). Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. Journal of Soil Contamination, 7(4), 497-509.

    Article  CAS  Google Scholar 

  • Heaton, A. C. P., Rugh, C. L., Wang, N. J., & Meagher, R. B. (2005). Physiological responses of transgenic merA-tobacco (Nicotiana tabacum) to foliar and root mercury exposure. Water, Air, and Soil Pollution, 161(1-4), 137-155.

    Article  CAS  Google Scholar 

  • Horne, A. J.,Terry, N., & Banuelos, G. (2000). Phytoremediation by constructed wetlands. Phytoremediation of contamined soil on water, 13-39. Paper presented at the 4th International Conference on the Biogeochemistry of Trace Elements, University of California, Berkeley, CA.

    Google Scholar 

  • ITRC - Interstate Technology and Regulatory Cooperation Work Group. (2001). Phytotechnology Technical and Regulatory Guidance Document. From http://www.itrcweb.org.

    Google Scholar 

  • Ji, G. D., Yang, Y. S., Zhou, Q., Sun, T., & Ni, J. R. (2004). Phytodegradation of extra heavy oil-based drill cuttings using mature reed wetland: an in situ pilot study. Environment International, 30(4), 509-517.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., Knight, R. L., Vymazal, J., Brix, H., Cooper, P., Haberl, R. (Eds.). (2000). Constructed wetlands for pollution control - processes, performance, design and operation (IWA Scientific and Technical Report No. 8). London, UK: IWA Publishing.

    Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: A beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1), 6-15.

    Article  CAS  Google Scholar 

  • Langergraber, G., & Haberl, R. (2001). Constructed wetlands for water treatment. Minerva Biotecnologica, 13(2), 123-134.

    Google Scholar 

  • Langergraber, G., & Haberl, R. (2004). Application of constructed wetland technology in EcoSan systems. In: IWA (Eds.), Proceedings of the 4th IWA World Water Congress. 19-24 September 2004, Marrakech, Morocco (CD-ROM, Paper no. 116541).

    Google Scholar 

  • Lin, A. Y. C., Plumlee, M. H., & Reinhard, M. (2006). Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: Photochemical and biological transformation. Environmental Toxicology and Chemistry, 25(6), 1458-1464.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Tu, C., Kennelley, E. D., & Komar, K.M. (2000). Phytoremediation of arsenic contaminated soils and wastes. Annual meetings abstracts, American Society of Agronomy, Minneapolis, November, 5-9.

    Google Scholar 

  • Mang, X. B., Liu, P., Yang, Y. S., & Chen, W. R. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. Journal of Environmental Sciences - China, 19, 902-909.

    Google Scholar 

  • Masi, F., & Martinuzzi, N. (2007). Constructed wetlands for the Mediterranean countries: Hybrid systems for water reuse and sustainable sanitation. Desalination, 215(1-3), 44-55.

    Article  CAS  Google Scholar 

  • Matamoros, V., Arias, C., Brix, H., & Bayona, J. M. (2007). Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and a sand filter. Environmental Science and Technology, 41(23), 8171-8177.

    Article  CAS  Google Scholar 

  • Matamoros, V., Garcia, J., & Bayona, J. M. (2008). Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Research, 42(3), 653-660.

    Article  CAS  Google Scholar 

  • Miya, R. K., & Firestone, M. K. (2001). Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. Journal of Environmental Quality, 30(6), 1911-1918.

    Article  CAS  Google Scholar 

  • Moore, M. T., Cooper, C. M., Smith, S., Cullum, R. F., Knight, S. S., Locke, M. A., et al. (2007). Diazinon mitigation in constructed wetlands: Influence of vegetation. Water, Air, and Soil Pollution, 184(1-4), 313-321.

    Article  CAS  Google Scholar 

  • Munoz, P., Drizo, A., & Hession, W. C. (2006). Flow patterns of dairy wastewater constructed wetlands in a cold climate. Water Research, 40(17), 3209-3218.

    Article  CAS  Google Scholar 

  • Nepovim, A., Hebner, A., Soudek, P., Gerth, A., Thomas, H., Smrcek, S., et al. (2005). Phytoremediation of TNT by selected helophytes. Chemosphere, 60, 1454-1461.

    Article  CAS  Google Scholar 

  • Nepovím, A., Hubálek, M., Podlipná, R., Zeman, S., & VanÄ›k T., (2004a). In vitro degradation of 2,4,6-trinitrotoluene by plant tissue culture of Solanum aviculare and Rheum palmatum. Engineering in Life Sciences, 24, 46-49

    Google Scholar 

  • Nepovím, A., Podlipná, R., Soudek, P., Schröder, P., & VanÄ›k, T. (2004b). Effects of heavy metals and nitroaromatic compounds on horseradish glutathione s-transferase and peroxidase. Chemosphere, 57, 1007-1015

    Google Scholar 

  • Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Biotechnology, 15(3), 225-230.

    Article  CAS  Google Scholar 

  • O’Hogain, S. (2008). Reed bed sewage treatment and community development/participation. In J. Vymazal (Ed.), Wastewater treatment, plant dynamics and management in constructed and natural wetlands (pp. 135-147). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Olguin, E. J., Sanchez-Galvan, G., & Perez-Perez, T. (2007). Assessment of the phytoremediation potential of Salvinia minima baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water and Soil Pollution, 181(1-4), 135-147.

    Article  CAS  Google Scholar 

  • Orchard, B. J., Doucette, W. J., Chard, J. K., & Bugbee, B. (2000). Uptake of trichloroethylene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers. Environmental Toxicology and Chemistry Part 1, 19(4), 895-903.

    Google Scholar 

  • Phytoremediation Decision Tree. (1999). http://www.itrcweb.org/gd_Phyto.asp.

    Google Scholar 

  • Podlipna, R., Fialova, Z., & Vanek, T. (2008). Toxic effect of nitroesters on plant tissue cultures. Plant Cell Tissue and Organ Culture, 94(3), 305-311.

    Article  Google Scholar 

  • Puigagut, J., Villasenor, J., Salas, J. J., Becares, E., & Garcia, J. (2007). Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparative study. Ecological Engineering, 30(4), 312-319.

    Article  Google Scholar 

  • Reinhold, D. M., & Saunders, E. M. (2006). Phytoremediation of fluorinated agrochemicals by duckweed. Transactions of the Asabe, 49(6), 2077-2083.

    CAS  Google Scholar 

  • Rugh, C. L. (2001). Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation. In Vitro Cellular and Developmental Biology - Plant, 37(3), 321-325.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643-668.

    Article  CAS  Google Scholar 

  • Schoenmuth, B. W., & Pestemer, W. (2004). Dendroremediation of trinitrotoluene (TNT) - Part 1: Literature overview and research concept. Environmental Science and Pollution Research, 11(4), 273-278.

    Article  CAS  Google Scholar 

  • Schröder, P., & Collins, C. (2002). Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. International Journal of Phytoremediation, 4(4), 247-265.

    Article  Google Scholar 

  • Schröder, P., Maier, H., & Debus, R. (2005). Detoxification of herbicides in Phragmites australis. Zeitschrift fur Naturforschung. Section C. Journal of Biosciences, 60(3-4), 317-324.

    Google Scholar 

  • Schröder, P., Navarro-Avino, J., Azaizeh, H., Goldhirsh, A. G., DiGregorio, S., Komives, T., et al. (2007). Using phytoremediation technologies to upgrade waste water treatment in Europe. Environmental Science and Pollution Research, 14, 490-497.

    Article  Google Scholar 

  • Schwitzguebel, J. P., & VanÄ›k, T. (2003). Some fundamental advances in phytoremediation for xenobiotic chemicals. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants. New York: John Wiley & Sons.

    Google Scholar 

  • Seo, D. C., Hwang, S. H., Kim, H. J., Cho, J. S., Lee, H. J., DeLaune, R. D., et al. (2008). Evaluation of 2-and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater. Ecological Engineering, 32(2), 121-132.

    Article  Google Scholar 

  • Singh, O. V., & Jain, R. K. (2003). Phytoremediation of toxic aromatic pollutants from soil. Applied Microbiology and Biotechnology, 63(2), 128-135.

    Article  CAS  Google Scholar 

  • Singh, S., Melo, J. S., Eapen, S., & D’Souza, S.F. (2008). Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol. Ecotoxicology and Environmental Safety, 71(3), 671-676.

    Google Scholar 

  • Singhal, V., Kumar, A., & Rai, J. P. N. (2003). Phytoremediation of pulp and paper mill and distillery effluents by channel grass (Vallisneria spiralis). Journal of Scientific and Industrial Research, 62(4), 319-328.

    CAS  Google Scholar 

  • Stecher, M. C., Weaver, R. W., McInnes, K. J., & Mancl, K. (2001). Sizing of a subsurface flow constructed wetland for onsite domestic wastewater treatment. On-site wastewater treatment, pp. 539-547. Paper presented at the 9th National Symposium on Individual and Small Community Sewage Systems, FT WORTH, TX.

    Google Scholar 

  • Strand, S. E., Wang, X., Newman, L. A., Doty, S., Shang, T., Gordon, M. P., et al. (2000). Plant metabolism of chlorinated hydrocarbons - mechanisms and genetically engineered enhancements. Groundwater, pp. 383-384. Paper presented at the International Conference on Groundwater Research, Copenhagen, Denmark.

    Google Scholar 

  • Sun, G., & Cooper, D. (2008). A statistical analysis on the removal of organic matter in subsurface flow constructed wetlands in the UK. Environmental Technology, 29(10), 1139-1144.

    Article  CAS  Google Scholar 

  • Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18(5), 647-658.

    Article  Google Scholar 

  • Tagmount, A., Berken, A., & Terry, N. (2002). An essential role of S-adenosyl-L-methionine: L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium-methionine, the precursor of volatile selenium. Plant Physiology, 130(2), 847-856.

    Article  CAS  Google Scholar 

  • Tanner, C. C. (2001). Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Science and Technology, 44(11-12), 9-17.

    CAS  Google Scholar 

  • Vanek, T., Gerth, A., Vakrikova, Z., Podlipna, R., & Soudek, P. (2007). Phytoremediation of explosives. Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents 75, pp. 209-225. Paper presented at the Conference of the NATO-Advanced-Study-Institute on Advanced Science and Technology for Biological Decontamination of Sites Affected by Chemical and Radiological Nuclear Agents, Zhitomir, Ukraine.

    Google Scholar 

  • Vanek, T., Nepovim, A., Podlipna, R., Hebner, A., Vavrikova, Z., Gerth, A., et al. (2006). Phytoremediation of explosives in toxic wastes. Viable Methods of Soil and Water Pollution Monitoring, Protection and Remediation 69, pp. 455-465. Paper presented at the NATO Advanced Research Workshop on Viable Methods of Soil and Water Pollution Monitoring, Protection and Remediation, Cracow, Poland.

    Google Scholar 

  • VanÄ›k, T., & Schwitzguébel, J.P. (2003a). Phytoremediation inventory. Prague, UOCHB AVˇCR, Czech Republic, ISBN 80-86241-19-X.

    Google Scholar 

  • VanÄ›k, T., & Schwitzguébel, J. P. (2003b). Plant biotechnology for the removal of organic pollutants and toxic metals from wastewaters and contaminated sites. In V. Å aÅ¡ek & J. Glaser (Eds.), The utilization of bioremediation to reduce soil contamination: problems and solutions. Dordrecht: Kluwer, s. 285-293, ISBN 1-4020-1141-5.

    Google Scholar 

  • VanÄ›k, T., Soudek, P., Petrová, S., Fialová, Z., & Podlipná, R. (2008). Pharmaceuticals - environmental problem and its potential solution. Paper presented at the SoilRem 2008, Nanjing, China.

    Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685-700.

    Article  CAS  Google Scholar 

  • Williams, J. B. (2002). Phytoremediation in wetland ecosystems: Progress, problems, and potential. Critical Reviews in Plant Sciences, 21(6), 607-635.

    Article  CAS  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775-780.

    Article  CAS  Google Scholar 

  • Xia, H. L., & Ma, X. J. (2006). Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresource Technology, 97(8), 1050-1054.

    Article  CAS  Google Scholar 

  • Yang, X. E., Jin, X. F., Feng, Y., & Islam, E. (2005). Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative Plant Biology, 47(9), 1025-1035.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by MYES projects 2B06187 and 2B08058

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Vanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vanek, T., Podlipna, R., Fialova, Z., Petrova, S., Soudek, P. (2010). Uptake of Xenobiotics from Polluted Waters by Plants. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_23

Download citation

Publish with us

Policies and ethics