Skip to main content

The Role of Glycolipids in Photosynthesis

  • Chapter
Lipids in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

A variety of sugars with different epimeric and anomeric configurations and linkages are incorporated into head groups of glycolipids. The occurrence of glycoglycerolipids, glycolipids containing sugar residues directly linked to diacylglycerol, is restricted to photosynthetic organisms and some bacteria. Thylakoid membranes of chloroplasts and cyanobacteria are characterized by a unique set of three glycoglycerolipids, that is, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldia-cylglycerol (SQDG), and one phosphoglycerolipid, phosphatidylglycerol (PG). While glycoglycerolipids are the predominant lipids in thylakoids, DGDG and SQDG accumulate to even higher levels during phosphate deprivation. The strict correlation of galactolipids with oxygenic photosynthesis was previously taken as evidence for a specific role in photosynthetic light reactions. This was later confirmed by numerous studies on cyanobacteria, Chlamydomonas and plants. Mutants with decreased content of galactolipids are characterized by growth retardation, decreased chlorophyll content and reduced photosynthetic activity. DGDG is crucial for the structural integrity of the photosystem II (PS II) donor site, assembly of light harvesting complex II (LHCII) trimers and stability of PS I. MGDG plays an important role in the xanthophyll cycle activity, and the two galactolipids are integral constituents of different photosynthetic pigment—protein complexes. The analysis of transgenic plants accumulating alternative glycoglycerolipids showed that galactose is the preferred sugar in thylakoid lipids for photosynthesis. Analysis of mutants disrupted in SQDG biosynthesis revealed that SQDG is dispensable for photosynthesis in anoxygenic bacteria and in the cyanobacterium Synechococ-cus. In contrast, photoautotrophic growth of Synechocystis, another cyanobacterium, and of Chlamydomonas, depends on SQDG. SQDG is not essential for photosynthesis in Arabidopsisunder optimal conditions. Under phosphate limitation, SQDG is important for photosynthetic activity because SQDG as an anionic lipid partially replaces PG. Anoxygenic photosynthetic bacteria contain a more diverse set of phospho- and glycoglyc-erolipids, but little information is available on the role of the glycoglycerolipids in photosynthesis. MGDG is an important constituent of the chlorosome monolayer, and a glucosylgalactosyldiacylglycerol is associ- ated with the Rhodobacter reaction center. Taken together, glycoglycerolipids in plants and bacteria not only establish the lipid matrix of thylakoids, but they also play an important role for the activity of photosynthetic pigment—protein complexes and replace phospholipids during phosphate deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAG:

Diacylglycerol

DGDG:

Digalac-tosyldiacylglycerol

GlcGDG:

Glucosylgalactosyldiacylg-lycerol

LHCI:

Light harvesting complex I

LHCII:

Light harvesting complex II

MGDG:

Monogalactosyldiacylglycerol

MGlcDG:

Monoglucosyldiacylglycerol

NPQ:

Non-photochemical quenching

PG:

Phosphatidylglycerol

PS I:

Photosystem I

PS II:

Photosystem II

SQDG:

Sulfoqui-novosyldiacylglycerol

TGDG:

Trigalactosyldiacylglycerol

References

  • Aase B, Jantzen E, Bryn K and Ormerod J (1994) Lipids of heliobacteria are characterised by a high proportion of monoenoic fatty acids with variable double bond positions. Photosynth Res 41: 67–74

    Article  CAS  Google Scholar 

  • Aoki M, Sato N, Meguro A and Tsuzuki M (2004) Differing involvement of sulfoquinovosyl diacylglycerol in photo-system II in two species of unicellular cyanobacteria. Eur J Biochem 271: 685–693

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Schöttler MA, Kelly AA, Sundqvist C, Dörmann P, Karim S and Jarvis P (2008) Monogalactosyldiacylglyc-erol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol 148: 580–592

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H and Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Ara-bidopsis thaliana. Proc Natl Acad Sci USA 98: 10960– 10965

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Kakimoto T, Awai C, Kaneko T, Nakamura Y, Taka-miya K, Wada H and Ohta H (2006) Comparative genomic analysis revealed a gene for monoglucosyldiacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol 141: 1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Watanabe H, Benning C and Nishida I (2007) Diga-lactosyldiacylglycerol is required for better photosynthetic growth of Synechocystis sp. PCC 6803 under phosphate limitation. Plant Cell Physiol 48: 1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C and Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430: 1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Benning C and Somerville CR (1992a) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rho-dobacter sphaeroides. J Bacteriol 174: 2352–2360

    CAS  Google Scholar 

  • Benning C and Somerville CR (1992b) Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides. J Bacteriol 174: 6479–6487

    CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC and Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodo-bacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90: 1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Huang ZH and Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rho-dobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Camara-Artigas A, Brune D and Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci USA 99: 11055–11060

    Article  PubMed  CAS  Google Scholar 

  • Chain RK (1985) Involvement of plastoquinone and lipids in electron transport reactions mediated by the cytochrome b 6-f complex isolated from spinach. FEBS Lett 180: 321–325

    Article  PubMed  CAS  Google Scholar 

  • Dörmann P, Hoffmann-Benning S, Balbo I and Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7: 1801–1810

    PubMed  Google Scholar 

  • Dörmann P, Balbo I and Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181–2184

    Article  PubMed  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Feige GB, Heinz E, Wrage K, Cochems N and Ponzelar E (1980) Discovery of a new glyceroglycolipid in blue-green algae and its role in galactolipid synthesis. In: Mazliak P, Benveniste P, Costes C and Douce R (eds) Biogenesis and Function of Plant Lipids. Elsevier/North-Holland Biochemical Press, Amsterdam, pp. 135–140

    Google Scholar 

  • Frese RN, Siebert CA, Niederman RA, Hunter CN, Otto C and van Grondelle R (2004) The long-range organization of a native photosynthetic membrane. Proc Natl Acad Sci USA 101: 17994–17999

    Article  PubMed  CAS  Google Scholar 

  • Frigaard NU and Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosyn-thetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Froehlich JE, Benning C and Dörmann P (2001) The digalac-tosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactos-yldiacylglycerol synthase for DGDG biosynthesis. J Biol Chem 276: 31806–31812

    Article  PubMed  CAS  Google Scholar 

  • Fyfe PK, Isaacs NW, Cogdell RJ and Jones MR (2004) Disruption of a specific molecular interaction with a bound lipid affects the thermal stability of the purple bacterial reaction centre. Biochim Biophys Acta 1608: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Fyfe PK and Jones MR (2005) Lipids in and around photosyn-thetic reaction centres. Biochem Soc Trans 33: 924–930

    Article  PubMed  CAS  Google Scholar 

  • Gabashvili IS, Menikh A, Ségui J and Fragata M (1998) Protein structure of photosystem II studied by FT-IR spectros-copy. Effect of digalactosyldiacylglycerol on the tyrosine side chain residues. J Mol Struct 444: 123–133

    Article  CAS  Google Scholar 

  • Gage DA, Huang ZH and Benning C (1992) Comparison of sulfoquinovosyl diacylglycerol from spinach and the purple bacterium Rhodobacter sphaeroides by fast atom bombardment tandem mass spectrometry. Lipids 27: 632–636

    Article  PubMed  CAS  Google Scholar 

  • Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M and Dörmann P (2004) The galactolipid digalactosyldia-cylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus. J Biol Chem 279: 34624–34630

    Article  PubMed  CAS  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G and Benning C (1996)A null mutant of Synechococcus sp. PCC 7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271: 7501–7507

    Article  PubMed  Google Scholar 

  • Güler S, Essigmann B and Benning C (2000) A cyanobacterial gene, sqdX, required for biosynthesis of the sulfolipid sul-foquinovosyldiacylglycerol. J Bacteriol 182: 543–545

    Article  PubMed  Google Scholar 

  • Guo J, Zhang Z, Bi Y, Yang W, Xu Y and Zhang L (2005) Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana. FEBS Lett 579: 3619–3624

    Article  PubMed  CAS  Google Scholar 

  • Härtel H, Lokstein H, Dörmann P, Grimm B and Benning C (1997)Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol 115: 1175–1184

    Article  PubMed  Google Scholar 

  • Härtel H, Dörmann P and Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649–10654

    Article  PubMed  Google Scholar 

  • Heemskerk JW, Storz T, Schmidt RR and Heinz E (1990) Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 plants. Plant Physiol 93: 1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson L, Vlčková A, Selstam E, Huner N, Öquist G and Hurry V (2006) Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis. FEBS Lett 580: 4959–4968

    Article  PubMed  CAS  Google Scholar 

  • Hohmann-Marriott MF and Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581: 800–803

    Article  PubMed  CAS  Google Scholar 

  • Hölzl G and Dörmann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46: 225–243

    Article  PubMed  Google Scholar 

  • Hölzl G, Zähringer U, Warnecke D and Heinz E (2005) Gly-coengineering of cyanobacterial thylakoid membranes for future studies on the role of glycolipids in photosynthesis. Plant Cell Physiol 46: 1766–1778

    Article  PubMed  Google Scholar 

  • Hölzl G, Witt S, Kelly AA, Zähringer U, Warnecke D, Dörmann P and Heinz E (2006) Functional differences between galactolipids and glucolipids revealed in photosynthesis of higher plants. Proc Natl Acad Sci USA 103: 7512–7517

    Article  PubMed  Google Scholar 

  • Imhoff JF, Kushner DJ, Kushwaha SC and Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospiril-laceae and Chromatiaceae families. J Bacteriol 150: 1192–1201

    PubMed  CAS  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, San Diego, CA

    Google Scholar 

  • Israelachvili JN, Marcelja S and Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13: 121–200

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AG, Hendrickson L, Krol M, Selstam E, Öquist G, Hurry V and Huner NP (2006) Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic inter-system electron transport and state transitions in Ara-bidopsis thaliana due to photosystem I acceptor-side limitations. Plant Cell Physiol 47: 1146–1157

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C and Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97: 8175–8179

    Article  PubMed  CAS  Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46: 56–87

    Article  PubMed  CAS  Google Scholar 

  • Jones MR, Fyfe PK, Roszak AW, Isaacs NW and Cogdell RJ (2002) Protein-lipid interactions in the purple bacterial reaction centre. Biochim Biophys Acta 1565: 206–214

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA and Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalacto-syldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277: 1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA and Dörmann P (2004) Green light for galactolipid trafficking. Curr Opin Plant Biol 7: 262–269

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA, Froehlich JE and Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15: 2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff H, Mukherjee U and Galla HJ (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry 41: 4872–4882

    Article  PubMed  CAS  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod JG and Sirevåg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132: 149–154

    Article  CAS  Google Scholar 

  • Kobayashi K, Kondo M, Fukuda H, Nishimura M and Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104: 17216–17221

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Seki K, Ohnishi M, Ito S and Fujino Y (1990) Structure of novel glyceroglycolipids in Adzuki bean (Vigna angularis) seeds. Biochem Cell Biol 68: 59–64

    PubMed  CAS  Google Scholar 

  • Kruk J, Jemioła-Rzemińska M and Strzałka K (2003) Cyto-chrome c is reduced mainly by plastoquinol and not by superoxide in thylakoid membranes at low and medium light intensities: its specific interaction with thylakoid membrane lipids. Biochem J 375: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH and Barber J (2000) Phosphati-dylglycerol is involved in the dimerization of photosys-tem II. J Biol Chem 275: 6509–6514

    Article  PubMed  CAS  Google Scholar 

  • Latowski D, Åkerlund HE and Strzałka K (2004) Violaxan-thin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry 43: 4417–4420

    Article  PubMed  CAS  Google Scholar 

  • Linscheid M, Diehl BW, Övermöhle M, Riedl I and Heinz E (1997) Membrane lipids of Rhodopseudomonas viridis. Biochim Biophys Acta 1347: 151–163

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Makewicz A, Radunz A and Schmid GH (1996) Comparative immunological detection of lipids and carotenoids on peptides of photosystem I from higher plants and cyano-bacteria. Z Naturforsch [C] 51: 319–328

    CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ and Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96: 14706–14711

    Article  PubMed  CAS  Google Scholar 

  • Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R and Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265: 990–1001

    Article  PubMed  Google Scholar 

  • Minoda A, Sato N, Nozaki H, Okada K, Takahashi H, Sonoike K and Tsuzuki M (2002) Role of sulfoquinovo-syl diacylglycerol for the maintenance of photosystem II in Chlamydomonas reinhardtii. Eur J Biochem 269: 2353–2358

    Article  PubMed  CAS  Google Scholar 

  • Minoda A, Sonoike K, Okada K, Sato N and Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Baronio R and Bassi R (2002) Dynamics of chromophore binding to LHC proteins in vivo and in vitro during operation of the xanthophyll cycle. J Biol Chem 277: 36913–36920

    Article  PubMed  CAS  Google Scholar 

  • Moya I, Silvestri M, Vallon O, Cinque G and Bassi R (2001) Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40: 12552–12561

    Article  PubMed  CAS  Google Scholar 

  • Müh F, Renger T and Zouni A (2008) Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiol Biochem 46: 238–264

    Article  PubMed  Google Scholar 

  • Murata N, Higashi S and Fujimura Y (1990) Glycerolipids in various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 104–112

    Google Scholar 

  • Neerken S and Amesz J (2001) The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim Biophys Acta 1507: 278–290

    Article  PubMed  CAS  Google Scholar 

  • Nussberger S, Dörr K, Wang DN and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Oh-oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83: 177–186

    Article  PubMed  CAS  Google Scholar 

  • Páli T, Garab G, Horváth LI and Kóta Z (2003) Functional significance of the lipid-protein interface in photosyn-thetic membranes. Cell Mol Life Sci 60: 1591–1606

    Article  PubMed  Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, Dörmann P, Benning C and Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylg-lycerol. Biochemistry 36: 11769–11776

    Article  PubMed  CAS  Google Scholar 

  • Reinsberg D, Booth PJ, Jegerschold C, Khoo BJ and Paulsen H (2000) Folding, assembly, and stability of the major light-harvesting complex of higher plants, LHCII, in the presence of native lipids. Biochemistry 39: 14305–14313

    Article  PubMed  CAS  Google Scholar 

  • Riekhof WR, Ruckle ME, Lydic TA, Sears BB and Benning C (2003) The sulfolipids 2′-O-acyl-sulfoquinovosyldia-cylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol 133: 864–874

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Tietje C, Heinz E and Benning C (1995) Accumulation of UDP-sulfoquinovose in a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Biol Chem 270: 25792–25797

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Shen JR, Leng J, Ohashi S, Kobayashi M and Wada H (2006) Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem (Tokyo) 140: 201–209

    Article  CAS  Google Scholar 

  • Sakurai I, Mizusawa N, Wada H and Sato N (2007) Diga-lactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Phys-iol 145: 1361–1370

    Article  CAS  Google Scholar 

  • Sanda S, Leustek T, Theisen MJ, Garavito RM and Ben-ning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941–3946

    Article  PubMed  CAS  Google Scholar 

  • Sato N and Murata N (1982a) Lipid biosynthesis in the blue-green alga, Anabaena variabilis. I. Lipid classes. Biochim Biophys Acta 710: 271–278

    Article  CAS  Google Scholar 

  • Sato N and Murata N (1982b) Lipid biosynthesis in the blue-green alga (cyanobacterium), Anabaena variabilis. III. UDP-glucose:diacylglycerol glucosyltransferase activity in vitro. Plant Cell Physiol 23: 1115–1120

    CAS  Google Scholar 

  • Sato N, Tsuzuki M, Matsuda Y, Ehara T, Osafune T and Kawaguchi A (1995) Isolation and characterization of mutants affected in lipid metabolism of Chlamydomonas reinhardtii. Eur J Biochem 230: 987–993

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Aoki M, Maru Y, Sonoike K, Minoda A and Tsuzuki M (2003) Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat tolerance of photosystem II. Planta 217: 245–251

    PubMed  CAS  Google Scholar 

  • Siegenthaler P-A and Murata N (eds) (1998) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht

    Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919–928

    Article  PubMed  CAS  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Dörmann P and Renger G (2005) Investigations on the reaction pattern of photo-system II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44: 3134–3142

    Article  PubMed  CAS  Google Scholar 

  • Steiner S, Conti SF and Lester RL (1969) Separation and identification of the polar lipids of Chromatium strain D. J Bacteriol 98: 10–15

    PubMed  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Sato N and Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett 581: 4519–4522

    Article  PubMed  CAS  Google Scholar 

  • Tietje C and Heinz E (1998) Uridine-diphospho-sulfo-qinovose:diacylglycerol sulfoqinovosyltransferase activity is concentrated in the inner membrane of chloroplast envelopes. Planta 206: 72–78

    Article  CAS  Google Scholar 

  • Trémolières A, Dainese P and Bassi R (1994) Heterogenous lipid distribution among chlorophyll-binding proteins of photosystem II in maize mesophyll chloroplasts. Eur J Biochem 221: 721–730

    Article  PubMed  Google Scholar 

  • van Besouw A and Wintermans JF (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529: 44–53

    Article  PubMed  Google Scholar 

  • van Mooy BA, Rocap G, Fredricks HF, Evans CT and Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103: 8607–8612

    Article  PubMed  Google Scholar 

  • van Walraven HS, Koppenaal E, Marvin HJ, Hagendoorn MJ and Kraayenhof R (1984) Lipid specificity for the reconstitution of well-coupled ATPase proteoliposomes and a new method for lipid isolation from photosynthetic membranes. Eur J Biochem 144: 563–569

    Article  PubMed  Google Scholar 

  • Weissenmayer B, Geiger O and Benning C (2000) Disruption of a gene essential for sulfoquinovosyldiacylglycerol biosynthesis in Sinorhizobium meliloti has no detectable effect on root nodule symbiosis. Mol Plant Microbe Interact 13: 666–672

    Article  PubMed  CAS  Google Scholar 

  • Wintermans JF, Van Besouw A and Bogemann G (1981) Galactolipid formation in chloroplast envelopes. II. Isolation-induced changes in galactolipid composition. Biochim Biophys Acta 663: 99–107

    Article  PubMed  CAS  Google Scholar 

  • Wood BJ, Nichols BW and James AT (1965) The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta 106: 261–273

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE and Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22: 2370–2379

    Article  PubMed  CAS  Google Scholar 

  • Yu B and Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36: 762–770

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu C and Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732–5737

    Article  PubMed  CAS  Google Scholar 

  • Zepke HD, Heinz E, Radunz A, Linscheid M and Pesch R (1978) Combination and positional distribution of fatty acids in lipids from blue-green algae. Arch Microbiol 119: 157–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dörmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dörmann, P., Hölzl, G. (2009). The Role of Glycolipids in Photosynthesis. In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_12

Download citation

Publish with us

Policies and ethics