Skip to main content

Structuring and Behaviour of Water in Nanochannels and Confined Spaces

  • Chapter
Adsorption and Phase Behaviour in Nanochannels and Nanotubes

Abstract

The structure of bulk liquid water is dominated by its ability to form networks of directed hydrogen bonds. Although this is also true for water in confined spaces, there are additional conflicting consequences of the extensive surface and the fit within the available space. A relatively large proportion of water molecules in confined spaces occupy the interface and their interactions with the cavity surface may govern their ability to form hydrogen-bonded networks with each other. The physical properties and state of the contained water may vary widely from its bulk properties and show great dependence on the molecular characteristics of the cavity surface and the degree of confinement, as well as temperature and pressure. Apparently small changes in the surfaces or the confinement dimensions may bring about substantial changes in these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein J, Kumacheva E (1995) Confinement-induced phase transitions in simple liquids. Science 269:816–819

    Article  CAS  Google Scholar 

  2. Floquet N, Coulomb JP, Dufau N, Andre G, Kahn R (2004) Structural and dynamic properties of confined water in nanometric model porous materials (8 Å ≤ Ø ≤ 40 Å). Physica B 350:265–269

    Article  CAS  Google Scholar 

  3. Wernet Ph, Nordlund D, Bergmann U et al. (2004) The structure of the first coordination shell in liquid water. Science 304:995–999

    Article  CAS  Google Scholar 

  4. Head-Gordon T, Johnson ME (2006) Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. USA 103:7973–7977

    Article  CAS  Google Scholar 

  5. Ewing GE, Foster M, Cantrell W et al. (2003) Thin film water on insulator surfaces. In: Buch V, Devlin JP (ed.) Water in confining geometries. Springer-Verlag, Berlin, pp. 179–211

    Google Scholar 

  6. Luck WAP (1998) The importance of cooperativity for the properties of liquid water. J. Mol. Struct. 448:131–142

    Article  CAS  Google Scholar 

  7. Schechter RS, Gracia A, Lachaise J (1998) The electrical state of a gas/water interface. J. Colloid Interface Sci. 204:398–399

    Article  CAS  Google Scholar 

  8. Gan W, Wu D, Zhang Z et al. (2006) Orientation and motion of water molecules at air/water interface. Chin. J. Chem. Phys. 19:20–24

    CAS  Google Scholar 

  9. Chaplin MF (2008) Air–water surface and other water–gas interfaces. http://www.lsbu.ac.uk/water/interface.html. Accessed 20 March 2008

  10. Michot LJ, Villiéras F, François M et al. (2002) Water organisation at the solid–aqueous solution interface. C. R. Geosci. 334:611–631

    Article  CAS  Google Scholar 

  11. Jenniskens P, Banham SF, Blake DF et al. (1997) Liquid water in the domain of cubic crystalline ice Ic. J. Chem. Phys. 107:1232–1241

    Article  CAS  Google Scholar 

  12. Hu XL, Michaelides A (2007) Ice formation on kaolinite: Lattice match or amphoterism? Surf. Sci. 601:5378–5381

    Article  CAS  Google Scholar 

  13. Haq S, Clay C, Darling GR et al. (2006) Growth of intact water ice on Ru(0001) between 140 and 160 K: Experiment and density-functional theory calculations. Phys. Rev. B 73:115414

    Article  CAS  Google Scholar 

  14. Müller A, Bögge H, Diemann E (2003) Structure of a cavity-encapsulated nanodrop of water. Inorg. Chem. Commun. 6:52–53; Corrigendum: Inorg. Chem. Commun. 6:329

    Article  Google Scholar 

  15. Vaitheeswaran S, Yin H, Rasaiah JC, Hummer G (2004) Water clusters in non-polar cavities. Proc. Nat. Acad. Sci. USA 101:17002–17005

    Article  CAS  Google Scholar 

  16. Rana M, Chandra A (2007) Filled and empty states of carbon nanotubes in water: Dependence on nanotube diameter wall thickness and dispersion interactions. J. Chem. Sci. 119:367–376

    Article  CAS  Google Scholar 

  17. Beckstein O, Biggin PC, and Sansom MSP (2001) A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B 105:12902–12905

    Article  CAS  Google Scholar 

  18. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  CAS  Google Scholar 

  19. Tandon V, Bhagavatula SK, Nelson WC et al. (2008) Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophor. 29:1092–1101

    Article  CAS  Google Scholar 

  20. Vaitheeswaran S, Rasaiah JC, Hummer G (2004) Electric field and temperature effects on water in the narrow non-polar pores of carbon nanotubes. J. Chem. Phys. 121:7955–7965

    Article  CAS  Google Scholar 

  21. Hanasaki I, Nakamura A, Yonebayashi T et al. (2008) Structure and stability of water chain in a carbon nanotube. J. Phys Condens. Matter 20:015213

    Article  CAS  Google Scholar 

  22. Xiao-Yan Z, Hang-Jun L (2007) The structure and dynamics of water inside armchair carbon nanotube. Chin. Phys. 16:335–339

    Article  Google Scholar 

  23. Marañón J, Leoa D, Marañón J (2003) Confined water in nanotube. J. Mol. Structure (Theochem) 623:159–166

    Article  Google Scholar 

  24. Striolo A (2007) Water self-diffusion through narrow oxygenated carbon nanotubes. Nanotechnol. 18:475704

    Article  CAS  Google Scholar 

  25. Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett. 8:452–458

    Article  CAS  Google Scholar 

  26. Kudin KN, Car R (2008) Why are water hydrophobic interfaces charged? J. Am. Chem. Soc. 130:3915–3919

    Article  CAS  Google Scholar 

  27. Tandon V, Kirby BJ (2008) Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure. Electrophor. 29:1102–1114

    Article  CAS  Google Scholar 

  28. Langmuir I (1918) The adsorption of gases on plane surfaces of glass mica and platinum. J. Am. Chem. Soc. 40:1361–1403

    Article  CAS  Google Scholar 

  29. Richard T, Mercury L, Poulet F et al. (2006) Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. J. Colloid Interface Sci. 304:125–136

    Article  CAS  Google Scholar 

  30. Fouzri A, Dorbez-Sridi R, Oumezzine M et al. (2001) Water confined in silica gel at room temperature X-ray diffraction study. Int. J. Inorg. Mat. 3:1315–1317

    Article  CAS  Google Scholar 

  31. Fouzri A, Dorbez-Sridi R, Missaoui A et al. (2002) Water–silica gel interactions X-ray diffraction study at room and low temperature. Biomol. Eng. 19:207–210

    Article  CAS  Google Scholar 

  32. Goertz MP, Houston JE, Zhu X-Y (2007) Hydrophilicity and the viscosity of interfacial water. Langmuir 23:5491–5497

    Article  CAS  Google Scholar 

  33. Li T-D, Gao J, Szoszkiewicz R et al. (2007) Structured and viscous water in subnanometer gaps. Phys. Rev. B 75:115415

    Article  CAS  Google Scholar 

  34. Takahara S, Kittak S, Mori T et al. (2005) Neutron scattering study on dynamics of water molecules confined in MCM-41. Adsorption 11:479–483

    Article  Google Scholar 

  35. Mukhopadhyay R, Mitra S, Pillai KT et al. (2002) Dynamics of confined water in porous alumina: neutron-scattering study. Appl. Phys. A 74:S1314–S1316

    Article  CAS  Google Scholar 

  36. Crupi V, Majolino D, Longo F et al. (2006) FTIR/ATR study of water encapsulated in Na-A and Mg-exchanged A-zeolites. Vib. Spectrosc. 42:375–380

    Article  CAS  Google Scholar 

  37. Thompson H, Soper AK, Ricci MA et al. (2007) The three dimensional structure of water confined in nanoporous vycor glass. J. Phys. Chem. B 111:5610–5620

    Article  CAS  Google Scholar 

  38. Richard T, Mercury L, Massault M et al. (2007) Experimental study of D/H isotopic fractionation factor of water adsorbed on porous silica tubes. Geochim. Cosmochim. Acta 71:1159–1169

    Article  CAS  Google Scholar 

  39. Liu D, Zhang Y, Chen C-C et al. (2007) Observation of the density minimum in deeply supercooled confined water. Proc. Nat. Acad. Sci. USA 104:9570–9574

    Article  CAS  Google Scholar 

  40. Yamaguchi T, Yoshida K, Smirnov P et al. (2007) Structure and dynamic properties of liquids confined in MCM-41 mesopores. Eur. Phys. J. Spec. Top. 141:19–27

    Article  Google Scholar 

  41. Liu L, Chen S-H, Faraone A et al. (2005) Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95:117802

    Article  CAS  Google Scholar 

  42. Swenson J, Bergman R, Longeville S (2002) Experimental support for a dynamic transition of confined water. J. Non-Cryst. Solids 307–310:573–578

    Article  Google Scholar 

  43. Chu X-Q, Kolesnikov AI, Moravsky AP et al. (2007) Observation of a dynamic crossover in water confined in double-wall carbon nanotubes. Phys. Rev. E 76:021505

    Article  CAS  Google Scholar 

  44. Zanotti J-M, Bellissent-Funel M-C, Kolesnikov AI (2007) Phase transitions of interfacial water at 165 and 240 K. Connections to bulk water physics and protein dynamics. Eur. Phys. J. Spec. Top. 141:227–233

    Article  Google Scholar 

  45. Liu Z, Muldrew K, Wan RG et al. (2003) Measurement of freezing point depression of water in glass capillaries and the associated ice front shape. Phys. Rev. E 67:061602

    Google Scholar 

  46. Christenson HK (2001) Confinement effects on freezing and melting. J. Phys.: Condens. Matter 13:R95–R133

    Article  CAS  Google Scholar 

  47. Venzel BI, Egorov EA, Zhizhenkov VV et al. (1985) Determination of the melting point of ice in porous glass in relation to the size of the pores. J. Eng. Phys. Thermophys. 48:346–350

    Google Scholar 

  48. Zangi R (2004) Water confined to a slab geometry: A review of recent computer simulation studies. J. Phys.: Condens. Matter 16:S5371–S5388

    Article  CAS  Google Scholar 

  49. Yamaguchi T, Hashi H, Kittaka S (2006) X-ray diffraction study of water confined in activated carbon pores over a temperature range of 228–298 K. J. Mol. Liquids 129:57–62

    Article  CAS  Google Scholar 

  50. Rault J, Neffati R, Judeinstein P (2003) Melting of ice in porous glass: why water and solvents confined in small pores do not crystallize? Eur. Phys. J. B 36:627–637

    Article  CAS  Google Scholar 

  51. Sinha G, Leys J, Wübbenhorst M et al. (2007) Dielectric spectroscopy of water confined between Aerosil nanoparticles and in Vycor nanoporous glass. Int. J. Thermophys 28:616–628

    Article  CAS  Google Scholar 

  52. Churaev NV, Setzer MJ, Kiseleva OA et al. (2007) On the thermodynamic equilibrium between ice and electrolyte solutions in the conditions of confined geometry. Colloids Surfaces A: Physicochem. Eng. Aspects 300:327–334

    Article  CAS  Google Scholar 

  53. Floquet N, Coulomb JP, Dufau N et al. (2005) Confined water in mesoporous MCM-41 and nanoporous AlPO4-5: structure and dynamics. Adsorption 11:139–144

    Article  Google Scholar 

  54. Fan J-G, Zhao Y-P (2008) Freezing a water droplet on an aligned Si nanorod array substrate. Nanotechnology 19:155707

    Article  CAS  Google Scholar 

  55. Koga K, Gao GT, Tanaka H et al. (2002) How does water freeze inside carbon nanotubes? Physica A 314:462–469

    Article  CAS  Google Scholar 

  56. Bai J, Wang J, Zeng XC (2006) Multiwalled ice helixes and ice nanotubes. Proc. Nat. Acad. Sci. USA 103:19664–19667

    Article  CAS  Google Scholar 

  57. Takaiwa D, Hatano I, Koga K et al. (2008) Phase diagram of water in carbon nanotubes. Proc. Nat. Acad. Sci. USA 105:39–43

    Article  CAS  Google Scholar 

  58. Gileadi E, Kirowa-Eisner E (2006) Electrolytic conductivity—the hopping mechanism of the proton and beyond. Electrochim. Acta 51:6003–6011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Chaplin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chaplin, M.F. (2010). Structuring and Behaviour of Water in Nanochannels and Confined Spaces. In: Dunne, L.J., Manos, G. (eds) Adsorption and Phase Behaviour in Nanochannels and Nanotubes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2481-7_11

Download citation

Publish with us

Policies and ethics