Skip to main content

Beyond Spandrels: Stephen J. Gould, EvoDevo, and the Extended Synthesis

  • Conference paper
  • First Online:
Stephen J. Gould: The Scientific Legacy

Abstract

In evolutionary biology, the term “spandrel” infallibly elicits the memory of Steve Gould. It has become a standard in referring to constructional byproducts and developmental constraints. More often than not, these were regarded as lesser facets of evolutionary change, with priority given to population dynamics and the workings of natural selection. But the fundamental criticism, in the spandrels paper and other works of Gould, of the absence of organism level factors in the standard Modern Synthesis account, also helped trigger the EvoDevo revolution and important reconceptualizations of evolutionary theory. Recent versions of theory expansion include many of Gould’s propositions but also theoretical changes emerging from other fields, such as genomics, non-genetic inheritance, niche construction, and others. These amount not merely to a numerical addition of factors to be taken into account, but also initiate major shifts in theory structure. As a consequence, today’s extended frameworks of evolutionary theory entail a significant increase in explanatory capacity and predictive power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberch P (1991) From genes to phenotype: dynamical systems and evolvability. Genetica 84:5–11

    Article  PubMed  CAS  Google Scholar 

  • Alberch P, Gale EA (1985) A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution 39:8–23

    Article  Google Scholar 

  • Alberch P, Alberch J (1981) Heterochronic mechanisms of morphological diversification and evolutionary change in the Neotropical salamander, Bolitoglossa occidentalis (Amphibia: Plethodontidae). J Morphol 167:249–264

    Article  Google Scholar 

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Google Scholar 

  • Ambros V (2000) Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev 10:428–433

    Article  PubMed  CAS  Google Scholar 

  • Beldade P, Koops K, Brakefield PM (2002) Developmental constraints versus flexibility in morphological evolution. Nature 416:844–847

    Article  PubMed  CAS  Google Scholar 

  • Bell MA (1987) Interacting evolutionary constraints in pelvic reduction of Threespine sticklebacks, Gasterosteus aculeatus (Pisces, Gasterosteidae). Biol J Linn Soc 31:347–382

    Article  Google Scholar 

  • Bernardi G (2005) Structural and evolutionary genomics: natural selection in genome evolution. Elsevier Science, Amsterdam

    Google Scholar 

  • Caldwell MW (1994) Developmental constraints and limb evolution in Permian and extant lepidosauromorph diapsids. J Vertebr Paleontol 14:459–471

    Article  Google Scholar 

  • Callebaut W, Müller GB, Newman S (2007) The organismic systems approach: EvoDevo and the streamlining of the naturalistic agenda. In: Sansom R, Brandon R (eds) Integrating evolution and development: from theory to practice. MIT Press, Cambridge, pp 25–92

    Google Scholar 

  • Cheverud JM (1984) Quantitative genetics and developmental constraints on evolution by selection. J Theor Biol 110:155–171

    Article  PubMed  CAS  Google Scholar 

  • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • De Beer G (1930) Embryology and evolution. Clarendon Press, Oxford

    Google Scholar 

  • Depew DJ, Weber BH (2011) The fate of Darwinism: evolution after the modern synthesis. Biol Theory 6:89–102

    Article  Google Scholar 

  • Donoghue MJ, Ree RH (2000) Homoplasy and developmental constraint: a model and an example from plants. Am Zool 40:759–769

    Article  Google Scholar 

  • DuBrul EL (1971) On the phylogeny and ontogeny of the human larynx: a morphological and functional study. Evolution 25:739–740

    Article  Google Scholar 

  • Dudley M, Poethig RS (1991) The effect of a heterochronic mutation, teopod2, on the cell lineage of the maize shoot. Development 111:733–739

    PubMed  CAS  Google Scholar 

  • Edwards SV (2008) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19

    Article  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: An alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. W. H. Freeman and Company, San Francisco, pp 82–115

    Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. introduction. Philos Trans R Soc B: Biol Sci 365:547–556

    Article  Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Gould SJ (1989) A developmental constraint in cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43:516–539

    Article  Google Scholar 

  • Gould SJ (1980) Is a new and general theory of evolution emerging? Paleobiology 6:119–130

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B, Biol Sci 205:581–598

    Article  CAS  Google Scholar 

  • Gould S, Vrba E (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Hallgrimsson B, Jamniczky H, Young NM, Rolian C, Schmidt-Ott U, Marcucio R (2012) The generation of variation and the developmental basis for evolutionary novelty. J Exp Zool B Mol Dev Evol 318:501–517

    Article  PubMed  Google Scholar 

  • Helanterä H (2011) Extending the modern synthesis with ants: ant encounters. Biol Philos 26:935–944

    Article  Google Scholar 

  • Huang S (2011) The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-darwinian biology? BioEssays 34:149–157

    Article  PubMed  Google Scholar 

  • Jablonka E (2006) Genes as followers in evolution—a post-synthesis synthesis? Biol Philos 21:143–154

    Article  Google Scholar 

  • Kim J, Kerr JQ, Min GS (2000) Molecular heterochrony in the early development of drosophila. Proc Nat Acad Sci U S A 97:212–216

    Article  CAS  Google Scholar 

  • Kirschner M, Gerhart J (1998) Evolvability. Proc Nat Acad Sci U S A 95:8420–8427

    Article  CAS  Google Scholar 

  • Koonin EV (2008) Darwinian evolution in the light of genomics. Nucleic Acids Res 37:1011–1034

    Article  Google Scholar 

  • Kutschera U, Niklas K (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  PubMed  CAS  Google Scholar 

  • Love AC (2003) Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biol Philos 18:309–345

    Article  Google Scholar 

  • Maynard-Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution. Q Rev Biol 60:265–287

    Article  Google Scholar 

  • McKinney ML, McNamara KJ (1991) Heterochrony. Plenum Press, New York

    Book  Google Scholar 

  • Mitteroecker P, Gunz P, Bookstein FL (2005) Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evol Dev 7:244–258

    Article  PubMed  Google Scholar 

  • Moczek AP (2008) On the origins of novelty in development and evolution. BioEssays 30:432–447

    Article  PubMed  Google Scholar 

  • Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949

    Article  PubMed  Google Scholar 

  • Müller GB (2008) Evo-devo as a discipline. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Müller GB (2010) Epigenetic innovation. In: Pigliucci M, Müller GB (eds) Evolution—the extended synthesis. MIT Press, Cambridge, pp 307–332

    Google Scholar 

  • Newman SA, Bhat R (2009) Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form. Int J Dev Biol 53:693–705

    Article  PubMed  CAS  Google Scholar 

  • Newman SA, Müller GB (2006) Genes and form: inherency in the evolution of developmental mechanisms. In: Neumann-Held EM, Rehmann-Sutter C (eds) Genes in development: re-reading the molecular paradigm. Duke University Press, Durham, pp 38–73

    Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction. Princeton University Press, Princeton

    Google Scholar 

  • Parichy DM, Shaffer HB, Mangel M (1992) Heterochrony as a unifying theme in evolution and development. Evolution 46:1252–1254

    Article  Google Scholar 

  • Pievani T (2011) An evolving research programme: the structure of evolutionary theory. In: Fasolo A (ed) The theory of evolution and its impact. Springer Verlag, Berlin, pp 221–228

    Google Scholar 

  • Pigliucci M, Müller GB (2010) Evolution—the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  • Raff RA, Kaufman TC (1983) Embryos, genes, and evolution, 2nd edn. Macmillan, New York

    Google Scholar 

  • Rasmussen N (1987) A new model of developmental constraints as applied to the drosophila system. J Theor Biol 127:271–299

    Article  PubMed  CAS  Google Scholar 

  • Richards RJ (2008) The tragic sense of life. University of Chicago Press, Chicago

    Google Scholar 

  • Roux J, Robinson-Rechavi M (2008) Developmental constraints on vertebrate genome evolution. PLoS Genet 4:e1000311

    Article  PubMed  Google Scholar 

  • Ruvkun G, Giusto J (1989) The Caenorhabditis elegans heterochronic gene. lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338:313–319

    Article  PubMed  CAS  Google Scholar 

  • Schrey AW, Richards CL, Meller V, Sollars V, Ruden DM (2012) The role of epigenetics in evolution: the extended synthesis. Genet Res Int 2012:1–3

    Google Scholar 

  • Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151

    Article  PubMed  Google Scholar 

  • Streicher J, Müller GB (1992) Natural and experimental reduction of the avian fibula: developmental thresholds and evolutionary constraint. J Morphol 214:269–285

    Article  Google Scholar 

  • Vogl C, Rienesl J (1991) Testing for developmental constraints: carpal fusion in urodeles. Evolution 45:1516–1519

    Article  Google Scholar 

  • Wagner A (2011) The origins of evolutionary innovations. Oxford University Press, Oxford

    Google Scholar 

  • Wagner GP (1988) The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J Evol Biol 1:45–66

    Article  Google Scholar 

  • Wagner GP, Müller GB (2002) Evolutionary innovations overcome ancestral constraints: a re-examination of character evolution in male sepsid flies (Diptera: Sepsidae). Evol Dev 4:1–6

    Article  PubMed  Google Scholar 

  • Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Gäner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, New York, pp 79–97

    Chapter  Google Scholar 

  • Webb RH (2011) If evolution is the answer, what is the question? J Evol Psychol 9:91–107

    Article  Google Scholar 

  • Weber BH (2011) Extending and expanding the Darwinian synthesis: the role of complex systems dynamics. Stud Hist Philos Biol Biomed Sci 42:75–81

    Article  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wilson DS, Wilson EO (2008) Evolution for the good of the group. Am Sci 96:380–389

    Article  Google Scholar 

  • Wilson LAB (2011) The contribution of developmental palaeontology to extensions of evolutionary theory. Acta Zoologica 1–7

    Google Scholar 

  • Zakany J, Gerard M, Favier B, Duboule D (1997) Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO J 16:4393–4402

    Article  PubMed  CAS  Google Scholar 

  • Zelditch ML, Bookstein FL, Lundrigan BL (1993) The ontogenetic complexity of developmental constraints. J Evol Biol 6:621–641

    Article  Google Scholar 

Download references

Acknowledgments

I thank the Istituto Veneto di Science, Lettere ed Arti for the thoughtfulness to organize a meeting commemorating Stephen J. Gould. I am particularly grateful to the president of the Istituto, Gian Antonio Danieli, for the invitation to participate, as well as to Elena Gagliasso, Alessandro Minelli, Telmo Pievani, and Maria Turchetto for their enthusiasm regarding evolutionary theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd B. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this paper

Cite this paper

Müller, G.B. (2013). Beyond Spandrels: Stephen J. Gould, EvoDevo, and the Extended Synthesis. In: Danieli, G., Minelli, A., Pievani, T. (eds) Stephen J. Gould: The Scientific Legacy. Springer, Milano. https://doi.org/10.1007/978-88-470-5424-0_6

Download citation

Publish with us

Policies and ethics