Skip to main content

Contribution of Osmolyte Accumulation to Abiotic Stress Tolerance in Wild Plants Adapted to Different Stressful Environments

  • Chapter
Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies

Abstract

Abiotic stresses, mostly drought and salinity, are the major environmental factors which limit plant distribution in nature and reduce crop yields worldwide. The biotechnological improvement of crop stress tolerance would significantly contribute to the needed increase in food production, but requires a deep understanding of the mechanisms underlying plant responses to stress. Accumulation of osmolytes is one of those responses, which appears to be essential for tolerance in many species. Their main assumed role is to contribute to osmotic adjustment under conditions causing cellular dehydration, but they also have osmoprotectant functions as low-molecular-weight chaperons and reactive oxygen species (ROS) scavengers. Yet, important aspects of their mechanisms of action remain largely unknown, especially regarding the relevance and relative contribution of specific osmolytes to the stress tolerance of a given species. This gap in our knowledge is partly due to the experimental approaches commonly used to study those mechanisms, which have focused on non-tolerant model species and/or experiments performed under controlled – but artificial – laboratory or greenhouse setups.

In this review, we will summarise the (relatively scarce) data from field studies on the accumulation of different osmolytes in wild plants adapted to distinct stressful environments: saline, arid and gypsum habitats. We propose that more effort and resources should be invested on the study of the stress responses of wild plants in their natural habitats, as a complement to greenhouse experiments. We believe that this approach will significantly enhance our knowledge on this specific topic and could eventually be applied to the genetic improvement of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian-Romero M, Wilson SJ, Blunden G, Yang M, Carabot-Cuervo A, Bashir AK (1998) Betaines in coastal plants. Biochem Syst Ecol 26:535–543

    Article  CAS  Google Scholar 

  • Ain-Lhout F, Zunzunegui M, Diaz Barradas MC, Tirado R, Clavijo A, Garcia Novo F (2001) Comparison of proline accumulation in two Mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230:175–183

    Article  CAS  Google Scholar 

  • Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442

    Article  CAS  PubMed  Google Scholar 

  • Albert R (1975) Salt regulation in halophytes. Oecologia 21:57–71

    Article  Google Scholar 

  • Albert R, Kinzel H (1973) Unterscheidung von Physiotypen bei Halophyten des Neusiedlerseegebietes (Österreich). (Distinction of physiotypes in halophytes from the Neusiedler Lake region, Austria). Z Pflanzenphysiol 70:138–158

    Article  CAS  Google Scholar 

  • Albert R, Popp M (1977) Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia 27:157–170

    Article  Google Scholar 

  • Albert R, Popp M (1978) Zur Rolle der löslichen Kohlenhydrate in Halophyten des Neusiedlersee-Gebietes (Österreich). (On the role of soluble carbohydrates in halophytes from the Neusiedler Lake region, Austria). Oecol Plant 13:27–42

    Google Scholar 

  • Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. Plant Physiol 156:612–616

    Article  CAS  Google Scholar 

  • Ashraf MY, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Aziz I (2007) Seasonal flux in water potential, chlorophyll and proline content in plants at Ziarat Valley Balochistan, Pakistan. Pak J Bot 39:1995–2002

    Google Scholar 

  • Aziz I, Khan MA (2003) Proline and water status of some desert shrubs before and after water rains. Pak J Bot 35:902–906

    Google Scholar 

  • Aziz I, Gul B, Gulzar S, Khan MA (2011) Seasonal variation in plant water status of four desert halophytes from semi-arid region of Karachi. Pak J Bot 43:587–594

    Google Scholar 

  • Bankaji I, Sleimi N (2012) Polymorphisme biochimique chez quelques halophytes autochtones du nord Tunisien (Chemical polymorphism of some North Tunisian autochthonous halophytes). Rev Écol 67:29–39

    Google Scholar 

  • Bartels D, Ramanjulu S (2005) Drought and salt tolerance in plants. Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Batanouny KH, Ebeid MM (1981) Diurnal changes in proline content of desert plants. Oecologia 51:250–252

    Article  Google Scholar 

  • Ben Hamed K, Ellouzi H, Zribi Talbi O, Hessini K, Slama I, Ghnaya T, Munné Bosch S, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40:883–896

    CAS  Google Scholar 

  • Boscaiu M, Mora E, Fola O, Scrion S, Llinares J, Vicente O (2009) Osmolyte accumulation in xerophytes as a response to environmental stress. Bull UASVM Hort 66:96–102

    Google Scholar 

  • Boscaiu M, Bautista I, Lidón A, Llinares J, Lull C, Donat P, Mayoral O, Vicente O (2013a) Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiol Plant 35:2193–2204

    Article  CAS  Google Scholar 

  • Boscaiu M, Lull C, Llinares J, Vicente O, Boira H (2013b) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186

    Article  Google Scholar 

  • Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5:287–292

    CAS  Google Scholar 

  • Burg MB, Kwon ED, Kültz D (1996) Osmotic regulation of gene expression. FASEB J 10:1598–1606

    CAS  PubMed  Google Scholar 

  • Caballero I, Olano JM, Loidi J, Escudero A (2003) Seed bank structure along a semi-arid gypsum gradient in Central Spain. J Arid Environ 55:287–299

    Article  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769

    CAS  Google Scholar 

  • DB Climate Change Advisors (2009) Investing in agriculture: far-reaching challenge, significant opportunity. An asset management perspective. (Deutsche Bank report). Whitepaper available online at: http://www.dbcca.com/research

  • Doddema H, Eddin RS, Mahasneh A (1986) Effects of seasonal changes of soil salinity and soil nitrogen on the N-metabolism of the halophyte Arthrocnemum fruticosum (L.) Moq. Plant Soil 92:279–293

    Article  CAS  Google Scholar 

  • Duvigneaud P (1968) Essai de classification chimique (éléments minéraux) des plantes gypsicoles du bassin de l’Ebre (Test of chemical classification (mineral elements) of gypsophytes from the Ebro basin). B Soc Roy Bot 101:279–291

    Google Scholar 

  • Duvigneaud P, Denaeyer-De Smet S (1966) Accumulation du soufre dans quelques espèces gypsophiles d’Espagne (Sulphur accumulation in several species of gypsophytes from Spain). B Soc Roy Bot 99:263–269

    Google Scholar 

  • Epstein PR, Mills E (eds) (2005) Climate change futures. Health, ecological and economic dimensions. The Center for Health and the Global Environment, Harvard Medical School, Harvard

    Google Scholar 

  • Escudero A, Carnes LF, Pérez García F (1997) Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J Arid Environ 36:487–497

    Article  Google Scholar 

  • Escudero A, Somolinos RC, Olano JM, Rubio A (1999) Factors controlling the establishment of Helianthemum squamatum, an endemic gypsophila of semi-arid Spain. J Ecol 87:290–302

    Article  Google Scholar 

  • FAO (1990) Management of gypsiferous soils, FAO Soils Bull 62. FAO, Rome: FAO Land and Water Development Division

    Google Scholar 

  • Ferriol M, Pérez I, Merle H, Boira H (2006) Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284:205–216

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–335

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Forment J, Naranjo MA, Roldán M, Serrano R, Vicente O (2002) Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30:511–519

    Article  CAS  PubMed  Google Scholar 

  • Furtana GB, Duman H, Tipirdamaz R (2013) Seasonal changes of inorganic and organic osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turk J Bot 37:455–463

    CAS  Google Scholar 

  • Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39:9–17

    CAS  Google Scholar 

  • Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O (2014) Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants. doi:10.1093/aobpla/plu049

    PubMed Central  PubMed  Google Scholar 

  • Gorham J, Hughes L, Wyn Jones RG (1980) Chemical composition of salt-marsh plants from Ynys Môn (Anglesey): the concept of physiotypes. Plant Cell Environ 3:309–318

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback proline accumulation of ∆l-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology – a review. Biotechnol Mol Biol Rev 3:8–13

    Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rodees D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt stress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Beena N (2002) Seasonal variation in water relations of desert shrubs from Karachi, Pakistan. Pak J Bot 34:329–340

    Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) The effect of the salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L) Forssk. J Arid Environ 45:73–84

    Article  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Llinares JV, Bautista I, Donat MP, Lidon A, Lull C, Mayoral O, Shantanu W, Boscaiu M, Vicente O (2015) Responses to environmental stress in plants adapted to Mediterranean gypsum habitats. Not Sci Biol 7:37–44

    Article  Google Scholar 

  • Martínez-Duro E, Ferrandis P, Escudero A, Luzuriaga AL, Herranz JM (2010) Secondary old-field succession in an ecosystem with restrictive soils: does time from abandonment matter? Appl Veg Sci 13:234–248

    Article  Google Scholar 

  • Merlo ME, Mota JF, Cabello J, Alemán MM (1998) La gipsofilia en plantas: un apasionante edafismo. Investigación y Gestión 3:103–112

    Google Scholar 

  • Meyer SE (1986) The ecology of gypsophyle endemism in the eastern Mojave desert. Ecology 67:1303–1313

    Article  Google Scholar 

  • Meyer SE, García-Moya E (1989) Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. J Arid Environ 16:147–155

    Google Scholar 

  • Meyer SE, García-Moya E, Lagunes-Espinoza LC (1992) Topographic and soil surface effects on gypsophila plant community patterns in central Mexico. J Veg Sci 3:429–438

    Article  Google Scholar 

  • Mohammed S, Sen DN (1987) Proline accumulation in arid zones plants. J Arid Environ 13:231–236

    Google Scholar 

  • Moruno F, Soriano P, Vicente O, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 39:18–23

    Google Scholar 

  • Mota JF, Sola AJ, Jiménez-Sánchez ML, Pérez-García F, Merlo ME (2004) Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers Conserv 13:1797–1808

    Article  Google Scholar 

  • Mouri C, Benhassaini H, Bendimered FZ, Belkhodja M (2012) Variation saisonnière de la teneur en proline et en sucres solubles chez l’oyat (Ammophila arenaria (L.) Link) provenant du milieu naturel de la côte ouest de l’Algérie. Acta Bot Gallica 159:127–135

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Greenway H, Kirst GO (1983) Halotolerant eukaryotes. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology III, vol 12c. Physiological plant ecology. Springer, Berlin, pp 59–135

    Google Scholar 

  • Murakeözy ÉP, Smirnoff N, Nagy Z, Tuba Z (2002) Seasonal accumulation pattern of pinitol and other carbohydrates in Limonium gmelinii subsp. hungarica. J Plant Physiol 159:485–490

    Article  Google Scholar 

  • Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401

    Article  PubMed  Google Scholar 

  • Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palacio S, Aitkenhead M, Escudero A, Montserrat-Martí G, Maestro M, Robertson AH (2014) Gypsophila chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One. doi:10.1371/journal.pone.0107285

    Google Scholar 

  • Pardo-Domènech LL, Tifrea A, Grigore MN, Boscaiu M, Vicente O (2015) Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosyst. doi:10.1080/11263504.2014.990943

    Google Scholar 

  • Parsons RF (1976) Gypsophily in plants. A review. Am Midl Nat 96:1–20

    Article  Google Scholar 

  • Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophila vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311

    Article  Google Scholar 

  • Romao RL, Escudero A (2005) Gypsum physical soil crusts and the existence of gypsophytes in semi-arid central Spain. Plant Ecol 181:127–137

    Article  Google Scholar 

  • Ruíz JM, López-Cantarero I, Rivero RM, Romero L (2003) Sulphur phytoaccumulation in plant species characteristic of gypsiferous soils. Int J Phytorem 5:203–210

    Article  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sanders D (2000) The salty tale of Arabidopsis. Curr Biol 10:486–488

    Article  Google Scholar 

  • Sayed SA, Gadallah MAA, Salama FM (2013) Ecophysiological studies on three desert plants growing in Wadi Natash, Eastern Desert, Egypt. J Biol Earth Sci 3:B135–B143

    Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defence responses. Int Rev Cytol 165:1–52

    Article  CAS  PubMed  Google Scholar 

  • Serrano R, Gaxiola R (1994) Microbial models and salt stress tolerance in plants. Crit Rev Plant Sci 13:121–138

    Article  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153

    Article  CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Valladares F (2003) Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. Progress Bot 64:439–471

    Article  Google Scholar 

  • Verheye WH, Boyadgiev TG (1997) Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use Manag 13:97–103

    Article  Google Scholar 

  • Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481

    Article  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yanqiong L, Xingliang L, Shaowei Z, Hong C, Yongjie Y, Changlong M, Jun L (2007) Drought-resistant physiological characteristics of four shrub species in arid valley of Minjiang River, China. Acta Ecol Sin 27:870–878

    Article  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

  • Youssef AM (2009) Salt tolerance mechanisms in some halophytes from Saudi Arabia and Egypt. Res J Agric Biol Sci 5:191–206

    CAS  Google Scholar 

  • Zhou H, Tan H, Zhang Z-S, Jia X, Fan H, Yuan J (2010) Physiological responses and adjustment mechanisms of the dominate species of natural vegetation of Eastern Tengger Desert. Sci Cold Arid Reg 2:455–463

    Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Boscaiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Vicente, O., Al Hassan, M., Boscaiu, M. (2016). Contribution of Osmolyte Accumulation to Abiotic Stress Tolerance in Wild Plants Adapted to Different Stressful Environments. In: Iqbal, N., Nazar, R., A. Khan, N. (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_2

Download citation

Publish with us

Policies and ethics