Skip to main content

Thermonociception: Sensory and Modulatory Mechanisms in Pathological Conditions

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

This review begins with an overview of various heat-sensitive nociceptive afferents, namely, A-fiber mechanical nociceptors, heat nociceptors, C-heat nociceptors, and polymodal re(noci)ceptors of the skin and other tissues, and also introduces recently demonstrated heat-sensitive ion channels. Then, the sensitization to heat of these afferents in inflammation or after mild burn is summarized. Sensitization of nociceptors has been considered to be induced by an increase of inflammatory mediators in inflamed tissues, and the effects of inflammatory mediators (bradykinin, prostaglandins, histamine, 5-hydroxytryptamine, and protons) are reviewed mainly on the basis of the results from testicular polymodal receptors from the authors’ laboratory. Possible intracellular mechanisms for the sensitizing effects of these substances are also introduced. In addition to this mechanism of sensitization, recent advances in research have revealed other possibilities. One of these is the sensitization of heat-sensitive ion channels themselves, a second is the modulating effects of nerve growth factor, and a third is upregulation of receptors and ion channels expressed on the sensory receptors. Cooperation among all these mechanisms would cause strong sensitization of nociceptors to heat and result in hyperalgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sato A, Sato Y, Schmidt RF (1997) The impact of somatosensory input on autonomic functions. Rev Physiol Biochem Pharmacol 130: 1–328

    Article  PubMed  CAS  Google Scholar 

  2. Kumazawa T (1981) Nociceptors and autonomic nervous control. Asian Med J 24: 632–656

    Google Scholar 

  3. Iggo A (1959) Cutaneous heat and cold receptors with slowly conducting (C) afferent fibres. Q J Exp Physiol 44: 362–370

    CAS  Google Scholar 

  4. Treede RD, Meyer RA, Raja SN, et al (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol (Lond) 483: 747–758

    CAS  Google Scholar 

  5. Baumann TK, Simone DA, Shain CN, et al (1991) Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced-pain and hyperalgesia. J Neurophysiol (Bethesda) 66: 212–227

    CAS  Google Scholar 

  6. Lynn B, Faulstroh K, Pierau FK (1995) The classification and properties of nociceptive afferent units from the skin of the anaesthetized pig. Eur J Neurosci 7:43137

    Google Scholar 

  7. Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol (Bethesda) 32: 1025–1043

    CAS  Google Scholar 

  8. Kumazawa T, Perl ER (1977) Primate cutaneous sensory units with unmyelinated ( C) afferent fibers. J Neurophysiol (Bethesda) 40: 1325–1338

    Google Scholar 

  9. Torebjork HE (1974) Afferent C units responding to mechanical, thermal and chemical stimuli in human non-glabrous skin. Acta Physiol Scand 92: 374–390

    Article  PubMed  CAS  Google Scholar 

  10. Lang E, Novak A, Reeh PW, et al (1990) Chemosensiti-vity of fine afferents from rat skin in vitro. J Neurophysiol (Bethesda) 63: 887–901

    CAS  Google Scholar 

  11. Hallin RG, Torebjork HE, Wiesenfeld Z (1981) Nociceptors and warm receptors innervated by C fibres in human skin. J Neurol Neurosurg Psychiatry 44: 313–319

    Google Scholar 

  12. Lynn B, Carpenter SE (1982) Primary afferent units from the hairy skin of the rat hind limb. Brain Res 238: 29–43

    Article  PubMed  CAS  Google Scholar 

  13. Kumazawa T, Mizumura K, Sato J (1987) Response properties of polymodal receptors studied using in vitro testis superior spermatic nerve preparations of dogs. J Neuro-physiol (Bethesda) 57: 702–711

    CAS  Google Scholar 

  14. Mizumura K, Sato J, Kumazawa T (1992) Strong heat stimulation sensitized the heat response as well as the bradykinin response of visceral polymodal receptors. J Neurophysiol (Bethesda) 68: 1209–1215

    CAS  Google Scholar 

  15. Kumazawa T, Mizumura K (1980) Mechanical and thermal responses of polymodal receptors recorded from the superior spermatic nerve of dogs. J Physiol (Lond) 299: 233–245

    CAS  Google Scholar 

  16. Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol (Lond) 273: 179–194

    CAS  Google Scholar 

  17. Gallar J, Pozo MA,Tuckett RP, et al (1993) Response of sensory units with unmyelinated fibres to mechanical, thermal and chemical stimulation of the cat’s cornea. J Physiol (Lond) 468: 609–622

    CAS  Google Scholar 

  18. Gebhart GF (1996) Visceral polymodal receptors. In: Kumazawa T, Kruger L, Mizumura K (eds) The polymodal receptor: a gateway to pathological pain. Progress in brain research, vol 113. Elsevier, Amsterdam, pp 101–112

    Chapter  Google Scholar 

  19. Caterina MJ, Schumacher MA, Tominaga M, et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature (Lond) 389: 816–824

    Article  CAS  Google Scholar 

  20. Tominaga M, Caterina MJ, Malmberg AB, et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543

    Article  PubMed  CAS  Google Scholar 

  21. Caterina MJ, Rosen TA, Tominaga M, et al (1999) A cap-saicin-receptor homologue with a high threshold for noxious heat. Nature (Lond) 398: 436–441

    Article  CAS  Google Scholar 

  22. Lamotte RH, Thalhammer JG, Torebjork HE, et al (1982) Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. J Neurosci 2: 765–781

    PubMed  CAS  Google Scholar 

  23. Moiniche S, Dahl JB, Kehlet H (1993) Time course of primary and secondary hyperalgesia after heat injury to the skin. Br J Anaesth 71: 201–205

    Article  PubMed  CAS  Google Scholar 

  24. Perkins MN, Kelly D (1993) Induction of bradykinin-Bj receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 110: 1441–1444

    Article  PubMed  CAS  Google Scholar 

  25. Kawamura M, Kuraishi Y, Minami M, et al (1989) Antinociceptive effect of intrathecally administered antiserum against calcitonin gene-related peptide on thermal and mechanical noxious stimuli in experimental hyperal-gesic rats. Brain Res 497: 199–203

    Article  PubMed  CAS  Google Scholar 

  26. Bennett GJ, Xie YK (1988) A peripheral mononeuro-pathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107

    Article  PubMed  CAS  Google Scholar 

  27. Campbell JN, Meyer RA, Lamotte RH (1979) Sensitization of myelinated nociceptive afferents that innervate monkey hand. J Neurophysiol (Bethesda) 42: 1669–1679

    CAS  Google Scholar 

  28. Beck PW, Handwerker HO (1974) Nervous outflow from the cat’s foot during noxious radiant heat stimulation. Brain Res 67: 373–386

    Article  PubMed  CAS  Google Scholar 

  29. King JS, Gallant P, Myerson V, et al (1976) The effects of anti-inflammatory agents on the responses and the sensitization of unmyelinated (C) fiber polymodal nociceptors. In: Zotterman Y (ed) Sensory functions of the skin in primates with special reference to man. Wenner-Gren Center international symposium, vol 27. Pergamon, Oxford, pp 441–461

    Google Scholar 

  30. Manning DC, Raja SN, Meyer RA, et al (1991) Pain and hyperalgesia after intradermal injection of bradykinin in humans. Clin Pharmacol Ther 50: 721–729

    Article  PubMed  CAS  Google Scholar 

  31. Beck PW, Handwerker HO (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pflugers Arch 347: 209–222

    Article  PubMed  CAS  Google Scholar 

  32. Kumazawa T, Mizumura K, Minagawa M, et al (1991) Sensitizing effects of bradykinin on the heat responses of the visceral nociceptor. J Neurophysiol (Bethesda) 66: 1819–1824

    CAS  Google Scholar 

  33. Regoli D, Allogho SN, Rizzi A, et al (1998) Bradykinin receptors and their antagonists. Eur J Pharmacol 348: 1–10

    Article  PubMed  CAS  Google Scholar 

  34. Mizumura K, Minagawa M, Tsujii Y, et al (1990) The effects of bradykinin agonists and antagonists on visceral polymodal receptor activities. Pain 40: 221–227

    Article  PubMed  CAS  Google Scholar 

  35. Whalley ET, Clegg S, Stewart JM, et al (1987) The effect of kinin agonists and antagonists on the pain response of the human blister base. Naunyn-Schmiedebergs Arch Pharmacol 336: 652–655

    Article  PubMed  CAS  Google Scholar 

  36. Regoli D, Marceau F, Barabe J (1978) De novo formation of vascular receptors for bradykinin. Can J Physiol Pharmacol 56: 674–677

    Google Scholar 

  37. Rueff A, Dawson AJLR, Mendell LM (1996) Characteristics of nerve growth factor induced hyperalgesia in adult rats: dependence on enhanced bradykinin-1 receptor activity but not neurokinin-1 receptor activation. Pain 66: 359–372

    Article  PubMed  CAS  Google Scholar 

  38. Khasar SG, Miao FJ, Levine JD (1995) Inflammation modulates the contribution of receptor-subtypes to bradykinin-induced hyperalgesia in the rat. Neuroscience 69: 685–690

    Article  PubMed  CAS  Google Scholar 

  39. Banik RK, Sato J, Kasai M, et al (1999) Increased responsiveness of C-fiber nociceptors to bradykinin and relative involvement of bradykinin B1 and B2 receptors in chronic inflammation (abstract). Pain Res 14: 117

    Google Scholar 

  40. Davis CL, Naeem S, Phagoo SB, et al (1996) B-l bradykinin receptors and sensory neurones. Br J Pharmacol 118: 1469–1476

    Article  PubMed  CAS  Google Scholar 

  41. Kasai M, Kumazawa T, Mizumura K (1998) Nerve growth factor increases sensitivity to bradykinin, mediated through B2 receptors, in capsaicin-sensitive small neurons cultured from rat dorsal root ganglia. Neurosci Res 32: 231–239

    Article  PubMed  CAS  Google Scholar 

  42. Raja SN, Campbell JN, Meyer RA, et al (1992) Role of kinins in pain and hyperalgesia: psychophysical studies in a patient with kininogen deficiency. Clin Sci 83: 337–341

    PubMed  CAS  Google Scholar 

  43. Boyce S, Rupniak NMJ, Carlson EJ, et al (1996) Nociception and inflammatory hyperalgesia in B-2 bradykinin receptor knockout mice. Immunopharmacology 33: 333–335

    Article  PubMed  CAS  Google Scholar 

  44. Perkins MN, Campbell E, Dray A (1993) Antinociceptive activity of the bradykinin Bi and B2 receptor antagonists des-Arg9, [Leu8] -BK and HOE 140, in two models of persistent hyperalgesia in the rat. Pain 53:191–197

    Google Scholar 

  45. Ohkubo T, Shibata M, Takahashi H, et al (1983) Effects of prostaglandin D2 on pain and inflammation. Jpn J Pharmacol 33: 264–266

    Article  PubMed  CAS  Google Scholar 

  46. Rueff A, Dray A (1993) Pharmacological characterization of the effects of 5-hydroxytryptamine and different prostaglandins on peripheral sensory neurons in vitro. Agents Actions 38: C13 - C15

    Article  PubMed  CAS  Google Scholar 

  47. Handwerker HO (1976) Pharmacological modulation of the discharge of nociceptive C-fibres. In: Zotterman Y (ed) Sensory functions of the skin in primates with special reference to man. Wenner-Gren Center international symposium, vol 27. Pergamon, Oxford, pp 427–439

    Google Scholar 

  48. Mizumura K, Minagawa M, Tsujii Y, et al (1993) Prostaglandin E2-induced sensitization of the heat response of canine visceral polymodal receptors in vitro. Neurosci Lett 161: 117–119

    Article  PubMed  CAS  Google Scholar 

  49. Cohen RH, Perl ER (1990) Contributions of arachidonic acid derivatives and substance P to the sensitization of cutaneous nociceptors. J Neurophysiol (Bethesda) 64: 457–464

    CAS  Google Scholar 

  50. Mizumura K, Sato J, Minagawa M, et al (1994) Incomplete suppressive effect of acetylsalicylic acid on the heat sensitization of canine testicular polymodal receptor activities. J Neurophysiol (Bethesda) 72: 2729–2736

    CAS  Google Scholar 

  51. Martin HA, Basbaum Al, Goetzl EJ, et al (1988) Leukotriene B4 decreases the mechanical and thermal thresholds of C-fiber nociceptors in the hairy skin of the rat. J Neurophysiol (Bethesda) 60: 438–445

    Google Scholar 

  52. Coleman RA, Smith WL, Narumiya S (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46: 205–229

    PubMed  CAS  Google Scholar 

  53. Sugimoto Y, Namba T, Honda A, et al (1992) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J Biol Chem 267: 6463–6466

    PubMed  CAS  Google Scholar 

  54. Regan JW, Bailey TJ, Pepperl DJ, et al (1994) Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype. Mol Pharmacol 46: 213–220

    PubMed  CAS  Google Scholar 

  55. Watabe A, Sugimoto Y, Honda A, et al (1993) Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem 268: 20175–20178

    CAS  Google Scholar 

  56. Coleman RA, Grix SP, Louttit JB, et al (1994) A novel inhibitory prostanoid receptor in piglet saphenous vein. Prostaglandins 47: 151–168

    PubMed  CAS  Google Scholar 

  57. Kumazawa T, Mizumura K, Koda H, et al (1996) EP receptor subtypes implicated in the PGE2-induced sensitization of polymodal receptors in responses to bradykinin and heat. J Neurophysiol (Bethesda) 75: 2361–2368

    CAS  Google Scholar 

  58. Sugimoto Y, Shigemoto R, Namba T, et al (1994) Distribution of the messenger RNA for the prostaglandin E receptor subtype EP3 in the mouse nervous system. Neu-roscience 62: 919–928

    CAS  Google Scholar 

  59. Willis AL (1969) Release of histamine, kinin and prostaglandins during carrageenin-induced inflammation in the rat. In: Monterazza P, Horton EW (eds ) Prostaglandins, peptides and amines. Academic Press, London, pp 31–38

    Google Scholar 

  60. Hardy JD, Wolff HG, Goodell H (1952) The nature of cutaneous hyperalgesia. In: Hardy JD, Wolff HG, Goodell H (eds) Pain sensations and reactions. Williams Wilkins, Baltimore, pp 173–215

    Google Scholar 

  61. Fjallbrant N, Iggo A (1961) The effect of histamine, 5- hydroxytryptamine and acetylcholine on cutaneous afferent fibres. J Physiol (Lond) 156: 578–590

    CAS  Google Scholar 

  62. Handwerker HO, Forster C, Kirchhoff C (1991) Discharge patterns of human C-fibers induced by itching and burning stimuli. J Neurophysiol (Bethesda) 66: 307–315

    CAS  Google Scholar 

  63. Fock S, Mense S (1976) Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res 105: 459–469

    Article  PubMed  CAS  Google Scholar 

  64. Neil A, Benoist JM, Kayser V, et al (1987) Initial nociceptive sensitization in carrageenin-induced rat paw inflammation is dependent on amine autacoid mechanisms: electrophysiological and behavioural evidence obtained with a quaternary antihistamine, thiazinamium. Exp Brain Res 65: 343–351

    Article  PubMed  CAS  Google Scholar 

  65. Koda H, Minagawa M, Leng Si-Hong, et al (1996) Hr receptor-mediated excitation and facilitation of the heat response by histamine in canine visceral polymodal receptors studied in vitro. J Neurophysiol (Bethesda) 76: 1396–1404

    CAS  Google Scholar 

  66. Mizumura K, Minagawa M, Tsujii Y, et al (1991) Differences in augmenting effects of various sensitizing agents on heat and bradykinin responses of the testicular polymodal receptor. In: Bond MR, Charlton JE, Woolf CJ (eds) Proceedings of the Vlth world congress of pain. Pain research and clinical management, vol 4. Elsevier, Amsterdam, pp 77–82

    Google Scholar 

  67. Reeh PW, Steen KH (1996) Tissue acidosis in nociception and pain. In: Kumazawa T, Kruger L, Mizumura K (eds) The polymodal receptor: a gateway to pathological pain. Progress in brain research, vol 113. Elsevier, Amsterdam, pp 143–151

    Chapter  Google Scholar 

  68. Ferreira SH, Nakamura MI (1979) Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins 18: 179–189

    PubMed  CAS  Google Scholar 

  69. Mizumura K, Koda H, Kumazawa T (1996) Opposite effects of increased intracellular cyclic AMP on the heat and bradykinin responses of canine visceral polymodal receptors in vitro. Neurosci Res 25: 335–341

    Article  PubMed  CAS  Google Scholar 

  70. Kress M, Rodl J, Reeh PW (1996) Stable analogues of cyclic AMP but not cyclic GMP sensitize unmyelinated primary afferents in rat skin to heat stimulation but not to inflammatory mediators, in vitro. Neuroscience 74: 609–617

    Article  PubMed  CAS  Google Scholar 

  71. Lynn B, O’Shea NR (1998) Inhibition of forskolin-induced sensitisation of frog skin nociceptors by the cyclic AMP-dependent protein kinase A antagonist H-89. Brain Res 780: 360–362

    Article  PubMed  CAS  Google Scholar 

  72. Gold MS, Reichling DB, Shuster MJ, et al (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sei U S A 93: 1108–1112

    Article  CAS  Google Scholar 

  73. Evans AR, Vasko MR, Nicol GD (1995) Prostaglandin E2 suppresses a potassium current in rat sensory neurons (abstract). Soc Neurosci Abstr 21: 900

    Google Scholar 

  74. Miller RJ (1987) Bradykinin highlights the role of phospholipid metabolism in the control of nerve excitability. Trends Neurosci 10: 226–228

    Article  CAS  Google Scholar 

  75. Hill SJ (1990) Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42: 45–83

    PubMed  CAS  Google Scholar 

  76. Leng S, Mizumura K, Koda H, et al (1996) Excitation and sensitization of the heat response induced by a phorbol ester in canine visceral polymodal receptors studied in vitro. Neurosci Lett 206: 13–16

    Article  PubMed  CAS  Google Scholar 

  77. Mizumura K, Koda H, Kumazawa T (1997) Evidence that protein kinase C activation is involved in excitatory and facilitatory effects of bradykinin on canine visceral nociceptors in vitro. Neurosci Lett 237: 29–32

    Article  PubMed  CAS  Google Scholar 

  78. Mizumura K, Koda H, Kumazawa T (2000) Possible contribution of protein kinase C in the effects of histamine on the visceral nociceptor activities in vitro. Neurosi Res 37: 183–190

    Article  CAS  Google Scholar 

  79. Cesare P, Dekker LV, Sardini A, et al (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23: 617–624

    Article  PubMed  CAS  Google Scholar 

  80. Donnerer J, Schuligoi R, Stein C (1992) Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience 49: 693–698

    Article  PubMed  CAS  Google Scholar 

  81. Constantinou J, Reynolds ML, Woolf CJ, et al (1994) Nerve growth factor levels in developing rat skin: up-regulation following skin wounding. Neuroreport 5: 2281–2284

    Article  PubMed  CAS  Google Scholar 

  82. Lewin GR, Ritter AM, Mendell LM (1993) Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci 13: 2136–2148

    PubMed  CAS  Google Scholar 

  83. Rueff A, Mendell LM (1994) NGF-induced thermal hyperalgesia in adult rats involves the activation of bradykinin B1-receptors (abstract). Soc Neurosci Abstr 20: 671

    Google Scholar 

  84. Amann R, Schuligoi R, Lanz I, et al (1996) Effect of a 5- lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat. Eur J Pharmacol 306: 89–91

    Article  PubMed  CAS  Google Scholar 

  85. Koltzenburg M, Bennett DL, Shelton DL, et al (1999) Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur J Neurosci 11: 1698–1704

    Article  PubMed  CAS  Google Scholar 

  86. Lawson SN, Djouhri L, Dawbarn D (1999) Changes in membrane properties of nociceptive primary afferent neurones of the guinea pig during peripheral inflammation (abstract) In: Abstracts, satellite meeting of the 9th world congress on pain, the primary nociceptive neuron, vol 1, p 65

    Google Scholar 

  87. Black JA, Langworthy K, Hinson AW, et al (1997) NGF has opposing effects on Na+ channnel III and SNS gene expression in spinal sensory neurons. Neuroreport 8: 2331–2335

    Article  PubMed  CAS  Google Scholar 

  88. Kasai M, Mizumura K (1999) Endogenous nerve growth factor increases the sensitivity to bradykinin in small dorsal root ganglion neurons of adjuvant inflamed rats. Neurosci Lett 272: 414

    Article  Google Scholar 

  89. Schafer MKH, Romeo H, Weihe E (1999) VR1 gene expression and partial colocalization with opioid mu receptors in primary sensory neurons: Differential regulation after peripheral inflammation and nerve injury (abstract). Soc Neurosci Abstr 25: 688

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Mizumura, K., Kumazawa, T. (2001). Thermonociception: Sensory and Modulatory Mechanisms in Pathological Conditions. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_58

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics