Skip to main content

Physiology of Komagataeibacter spp. During Acetic Acid Fermentation

  • Chapter
  • First Online:
Acetic Acid Bacteria

Abstract

Some species of the genus Komagataeibacter (formerly involved in genus Gluconacetobacter; see Chap. 1), known for their high acetic acid resistance, are involved in the industrial production of vinegar. Among acetic acid bacteria (AAB), the genus Acetobacter is mainly involved in surface static processes, where final acidities may reach a maximum range of 8 % to 9 %; Komagataeibacter strains are predominant in submerged processes, where vinegar may show acidities up to 15 % to 20 %. The final acidity that may be obtained in industrial vinegars is also dependent on the alcoholic raw material, so the highest levels may be reached by using distilled alcohol. Their intrinsic tolerance to extreme environmental conditions, such as high acetic acid and ethanol concentrations and low pH, is, among other intracellular molecular mechanisms, the result of a modification of the outer membrane, affecting phospholipids, fatty acids, and polysaccharides, as well as an increased activity and stability of alcohol dehydrogenase (ADH). In this chapter, the characteristics and genomic features of the bacteria implicated in submerged vinegar production are described.

Expertise: F. Barja: Microbiology, Biochemistry, Microscopy; C. Andrés-Barrao: Microbiology, Biochemistry, Molecular Biology; R. Ortega Pérez: Microbiology, Biochemistry, Molecular Biology; E.M. Cabello: Bioinformatics; M.L. Chappuis: Microbiology, Microscopy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An D, Na C, Bielawski J, Hannun YA, Kasper DL (2011) Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci USA 108(Suppl 1):4666–4671

    Article  CAS  PubMed  Google Scholar 

  • Andrés-Barrao C (2012) Characterization of acetic acid bacteria and study of the molecular strategies involved in the resistance to acetic acid during oxidative fermentation. PhD thesis no. 4452. University of Geneva, Switzerland

    Google Scholar 

  • Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Pérez R, Barja F (2011a) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193(10):2670–2671

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrés-Barrao C, Weber A, Chappuis ML, Theiler G, Barja F (2011b) Acetic acid bacteria population dynamics and natural imposition of Gluconacetobacter europaeus during submerged vinegar production. Arch Sci 64:9–24

    Google Scholar 

  • Andrés-Barrao C, Saad MM, Chappuis ML, Boffa M, Perret X, Ortega Pérez R, Barja F (2012) Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteomics 75(6):1701–1717

    Article  PubMed  Google Scholar 

  • Andrés-Barrao C, Benagli C, Chappuis M, Ortega Pérez R, Tonolla M, Barja F (2013) Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol 36(2):75–81

    Article  PubMed  Google Scholar 

  • Arnold S, Becker T, Delgado A, Emde F, Enenkel A (2002) Optimizing high strength acetic acid bioprocess by cognitive methods in an unsteady state cultivation. J Biotechnol 97(2):133–145

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37(17):5768–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callejón RM, Tesfaye W, Torrija MJ, Mas A, Troncoso AM, Morales ML (2008) HPLC determination of aminoacids with AQC derivatization in vinegars along submerged and surface acetifications and its relation to the microbiota. Eur Food Res Technol 227:93–102

    Article  Google Scholar 

  • Castro C, Cleenwerk I, Trcek J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux JL, Ganan P (2013) Gluconacetobacter medellinensis sp. nov., cellulose and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Chinnawirotpisan P, Theeragool G, Limtong S, Toyama H, Adachi OO, Matsushita K (2003) Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J Biosci Bioeng 96(6):564–571

    Article  CAS  PubMed  Google Scholar 

  • Cleenwerck I, De Vos P (2008) Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol 125(1):2–14

    Article  CAS  PubMed  Google Scholar 

  • Conner DE, Kotrola JS (1995) Growth and survival of Escherichia coli O157: H7 under acidic conditions. Appl Environ Microbiol 61:382–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudicci P (2006) Application of denaturing gradient gel electrophoresis (DGGE) analyisis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol 23:809–813

    Article  PubMed  Google Scholar 

  • Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K (2005) Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology 151:4111–4120

    Article  CAS  PubMed  Google Scholar 

  • Deeraksa A, Moonmangmee S, Toyama H, Adachi O, Matsushita K (2006) Conversion of capsular polysaccharide, involved in pellicle formation, to extracellular polysaccharide by galE deletion in Acetobacter tropicalis. Biosci Biotechnol Biochem 70:2536–2539

    Article  CAS  PubMed  Google Scholar 

  • Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52(2):149–182

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos RA, Berretta AA, Barud Hda S, Ribeiro SJ, González-García LN, Zucchi TD, Goldman GH, Riano-Pachon DM (2014) Draft genome sequence of Komagataeibacter rhaeticus strain AF1, a high producer of cellulose, isolated from kombucha tea. Genome Announc 2(4):e00731–14. doi:10.1128/genomeA.00731-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebner H, Follmann H, Sellmer S (1996a) Vinegar. Ullmann’s encyclopaedia of industrial chemistry, vol A27. VCH, Weinheim, pp 403–418

    Google Scholar 

  • Ebner H, Sellmer S, Follmann H (1996b) Acetic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6. VCH, Weinheim, pp 381–401

    Chapter  Google Scholar 

  • Entani E, Ohmori S, Masai H, Suzuki K (1985) Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490

    Article  CAS  Google Scholar 

  • Fernández-Pérez R, Torres C, Sanz S, Ruiz-Larrea F (2010a) Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method. Food Microbiol 27(8):973–978

    Article  PubMed  Google Scholar 

  • Fernández-Pérez R, Torres S, Sanz S, Ruiz-Larrea F (2010b) Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production. Eur Food Res Technol 231(5):813–819

    Article  Google Scholar 

  • Franke IH, Fegan M, Hayward C, Leonard G, Stackebrandt E, Sly LI (1999) Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49(pt 4):1681–1693

    Article  CAS  PubMed  Google Scholar 

  • Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y, Beppu T (1989) Cloning of the membrane-bound aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl Environ Microbiol 55(1):171–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Horinouchi S, Beppu T (1993) The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti. J Ferment Bioeng 76(4):270–275

    Article  CAS  Google Scholar 

  • Gerdes K (2000) Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 182:561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto H, Handa JP, Nakano S, Chita-gun JP (2008) Gene participating in acetic acid tolerance, acetic acid bacteria bred using the gene, and process for producing vinegar with the use of the acetic acid bacteria. United States Mitsukan Group Corporation (Handa-shi JP). Patent US7446192 (W/O03/078635) [Online]. Available at: http://www.freepatentsonline.com/7446192.html. Accessed on Feb 2014

  • Greenberg DE, Porcella SF, Stock F, Wong A, Conville PS, Murray PR, Holland SM, Zelazny AM (2006) Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56(pt 11):2609–2616

    Article  CAS  PubMed  Google Scholar 

  • Gullo M, De Vero L, Guidicci P (2009) Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl Environ Microbiol 75:2585–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruta S, Ueno S, Egawa I, Hashiguchi K, Fujii A, Nagano M, Ishii M, Igarashi Y (2006) Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int J Food Microbiol 109(1-2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo C, Vegas C, Mateo E, Tesfaye W, Cerezo AB, Callejón RM, Poblet M, Guillamón JM, Mas A, Torija MJ (2010) Effect of barrel design and the inoculation of Acetobacter pasteurianus in wine vinegar production. Int J Food Microbiol 141(1-2):56–62

    Article  CAS  PubMed  Google Scholar 

  • Iino T, Suzuki R, Tanaka N, Kosako Y, Ohkuma M, Komagata K, Uchimura T (2012) Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar. Int J Syst Evol Microbiol 62:1465–1469

    Article  CAS  PubMed  Google Scholar 

  • Ilabaca C, Navarrete P, Mardones P, Romero J, Mas A (2008) Application of culture culture-independent molecular biology based methods to evaluate acetic acid bacteria diversity during vinegar processing. Int J Food Microbiol 126(1-2):245–249

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Sugano Y, Shoda M (2002) Novel glycosyltransferase genes involved in the acetan biosynthesis of Acetobacter xylinum. Biochem Biophys Res Commun 295(2):230–235

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Okamoto-Kainuma A, Jochi T, Suzuki I, Matsui K, Kaga T, Koizumi Y (2010) Cloning and characterization of grpE in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng 109(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Iyer PR, Geib SM, Catchmark J, Kao TH, Tien M (2010) Genome sequence of cellulose producing bacterium Gluconacetobacter hansenii ATCC 23769. J Bacteriol 192(16):4256–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin-Nam K, Jong-Sok CH, Young-Jung W, Jong-Sun Y, Hwa-Won R (2005) Culture medium optimization for acetic acid production by a persimmon vinegar-derived bacterium. Appl Biochem Biotechnol 123:1–3

    Google Scholar 

  • Jojima Y, Mihara Y, Suzuki S, Yokozeki K, Yamanaka S, Fudou R (2004) Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54(pt 6):2263–2267

    Article  CAS  PubMed  Google Scholar 

  • Kanchanarach W, Theeragool G, Inoue T, Yakushi T, Adachi O, Matsushita K (2010) Acetic acid fermentation of Acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Biosci Biotechnol Biochem 74(8):1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Kaneshiro T, Law JH (1964) Phosphatidylcholine synthesis in Agrobacterium tumefaciens. I. Purification and properties of a phosphatidylethanolamine N-methyltransferase. J Biol Chem 239:1705–1713

    CAS  PubMed  Google Scholar 

  • Krahulec J, Kretová M, Grones J (2003) Characterization of plasmids purified from Acetobacter pasteurianus 2374. Biochem Biophys Res Commun 310:94–97

    Article  CAS  PubMed  Google Scholar 

  • Kubiak K, Kurzawa M, Jędrzejczak-Krzepkowska M, Ludwicka K, Krawczyk M, Migdalski A, Kacprzak MM, Loska D, Krystynowicz A, Bielecki S (2014) Complete genome sequence of Gluconacetobacter xylinus E25 strain: valuable and effective producer of bacterial nanocellulose. J Biotechnol 176:18–19

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wieme A, Spitaels F, Balzarini T, Nunes OC, Manaia CM, Van Landschoot A, De Vuyst L, Cleenwerck I, Vandamme P (2014) Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. Int J Syst Evol Microbiol 64(Pt 7):2407–2415

    Article  CAS  PubMed  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54(Pt 4):1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Saba JD, Obeid LM (1999) The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochem J 342(pt 3):667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariette I, Schwarz E, Vogel RF (1991) Characterization by plasmid profile analysis of acetic acid bacteria from wine, spirit and cider acetators for industrial vinegar production. J Appl Microbiol 71:134–138

    Google Scholar 

  • Matsushita K, Inoue T, Adachi O, Toyama H (2005) Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid. J Bacteriol 187(13):4346–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moonmangmee S, Kawabata K, Tanaka S, Toyama H, Adachi O, Matsushita K (2002) A novel polysaccharide involved in the pellicle formation of Acetobacter aceti. J Biosci Bioeng 93(2):192–200

    Article  CAS  PubMed  Google Scholar 

  • Morales ML, Tesfaye W, García-Parrilla MC, Casas JA, Troncoso AM (2001) Sherry wine vinegar: physicochemical changes through the acetification process. J Sci Food Agric 81:611–619

    Article  CAS  Google Scholar 

  • Mullins EA, Francois JA, Kappock TJ (2008) A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol 190(14):4933–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins EA, Starks CM, Francois JA, Sael L, Kihara D, Kappock TJ (2012) Formyl-coenzyme A (CoA):oxalate CoA-transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability. Protein Sci 21(5):686–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano S, Fukaya M (2008) Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Int J Food Microbiol 125(1):54–59

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Fukaya M, Horinouchi S (2004) Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiol Lett 234:315–322

    Article  Google Scholar 

  • Nakano S, Fukaya M, Horinouchi S (2006) Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Appl Environ Microbiol 72(1):497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda K, Taniguchi M, Ujike S, Ishihara N, Mori H, Ono H, Murooka Y (2001) Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan. Appl Environ Microbiol 67(2):986–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Tachimoto H, Kaga T (2010) Elevation of ceramide in Acetobacter malorum S24 by low pH stress and high temperature stress. J Biosci Bioeng 109(1):32–36

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K, Matsushita K, Fujita N, Shirai M (2011) Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 193(24):6997–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmori S, Uozumi T, Beppu T (1982) Loss of acetic acid resistance and ethanol oxidizing ability in an Acetobacter strain. Agric Biol Chem 46(2):381–389

    CAS  Google Scholar 

  • Okamoto-Kainuma A, Yan W, Kadono S, Tayama K, Koizumi Y, Yanagida F (2002) Cloning and characterization of groESL operon in Acetobacter aceti. J Biosci Bioeng 94(2):140–147

    Article  CAS  PubMed  Google Scholar 

  • Okamoto-Kainuma A, Yan W, Fukaya M, Tukamoto Y, Ishikawa M, Koizumi Y (2004) Cloning and characterization of the dnaKJ operon in Acetobacter aceti. J Biosci Bioeng 97(5):339–342

    Article  CAS  PubMed  Google Scholar 

  • Okumura H, Uozumi T, Beppu T (1985) Construction of plasmid vector and genetic transformation system for Acetobacter aceti. Agric Biol Chem 49:1011–1017

    CAS  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2012) Changes in the gene expression profile of Acetobacter aceti during growth on ethanol. J Biosci Bioeng 113(3):343–834

    Article  CAS  PubMed  Google Scholar 

  • Schüller G, Hertel C, Hammes WP (2000) Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50:213–257

    Article  Google Scholar 

  • Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in Central Europe. Syst Appl Microbiol 15:386–392

    Article  Google Scholar 

  • Sokollek SJ, Hertel C, Hammes WP (1998) Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentation. Int J Syst Bacteriol 48:935–940

    Article  CAS  PubMed  Google Scholar 

  • Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I, Van Landschoot A, De Vuyst L, Vandamme P (2014) Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int J Syst Evol Microbiol 64(Pt 4):1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Tahara Y, Yamada Y, Kondo K (1976) Phospholipid composition of Gluconobacter cerinus. Agric Biol Chem 40:2355–2360

    CAS  Google Scholar 

  • Takemura H, Horinouchi S, Beppu T (1991) Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol 173(22):70–76

    Google Scholar 

  • Trček J (2015) Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. Ann Microbiol 65(3):1287–1292

    Article  Google Scholar 

  • Trček J, Barja F (2015) Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int J Food Microbiol 196:137–144

    Article  PubMed  Google Scholar 

  • Trček J, Raspor P, Teuber M (2000) Molecular identification of Acetobacter isolates from submerged vinegar production, sequence analysis of plasmid pJK2-1 and application in development of a cloning vector. Appl Microbiol Biotechnol 35:1899–1901

    Google Scholar 

  • Trček J, Toyama H, Czuba J, Misiewicz A, Matsushita K (2006) Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol 70(3):366–373

    Article  PubMed  Google Scholar 

  • Trček J, Jerneje K, Matsushita K (2007) The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 11(4):627–635

    Article  PubMed  Google Scholar 

  • Urakami T, Komagata K (1987) Cellular fatty acid composition with special references to the existence of hydroxy fatty acids in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J Gen Appl Microbiol 33:135–165

    Article  CAS  Google Scholar 

  • Valero E, Berlanga TM, Roldán P, Jiménez C, Garcia I, Mauricio J (2005) Free amino acids and volatile compounds in vinegars obtained from different types of substrate. J Sci Food Agric 85:603–608

    Article  CAS  Google Scholar 

  • Vegas C, Mateo E, González A, Jara C, Guillamón JM, Poblet M, Torija MJ, Mas A (2010) Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int J Food Microbiol 138(1–2):130–136

    Article  CAS  PubMed  Google Scholar 

  • Vegas C, Gonzalez A, Mateo E, Mas A, Poblet M, Torija MJ (2013) Evaluation of representativity of acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Res Int 51(1):404–411

    Article  CAS  Google Scholar 

  • Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P (2014) Effects of growth medium on matrix-assisted laser desorption-ionization time of flight mass spectra: a case study of acetic acid bacteria. Appl Environ Microbiol 80(4):1528–1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada Y (2014) Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov. Int J Syst Evol Microbiol 64(Pt 5):1670–1672

    Article  PubMed  Google Scholar 

  • Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Nunoda M, Ishikawa T, Tahara Y (1981) The cellular fatty acid composition in acetic acid bacteria. J Gen Appl Microbiol 27:405–417

    Article  CAS  Google Scholar 

  • Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58(5):397–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang DF, Li H, Lin XM, Wang SY, Peng XX (2011) Characterization of outer membrane proteins of Escherichia coli in response to phenol stress. Curr Microbiol 62:777–783

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial assistance to the European Project WINEGAR (COOP-CT-2005/017269), to Academic Society of Geneva and to Botany and Plant Biology Department of University of Geneva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Barja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Barja, F., Andrés-Barrao, C., Ortega Pérez, R., Cabello, E.M., Chappuis, ML. (2016). Physiology of Komagataeibacter spp. During Acetic Acid Fermentation. In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_9

Download citation

Publish with us

Policies and ethics