Skip to main content

Advertisement

Log in

Characterization of Outer Membrane Proteins of Escherichia Coli in Response to Phenol Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Gram-negative bacteria are generally more tolerant to disinfectants than Gram-positive bacteria due to outer membrane (OM) barrier, but the tolerant mechanism is not well characterized. We have utilized comparative proteomic methodologies to characterize the OM proteins of E. coli K-12 K99+ in response to phenol stress and found that nine proteins were altered significantly. They were OM proteins OmpA, FadL, LamB, and OmpT, cytoplasmic-associated proteins AceA and EF-Tu, inner membrane protein AtpB, putative capsid protein Q8FewO, and unknown location protein Dps. They were reported here for the first time to be phenol-tolerant proteins. The alteration and functional characterization of the four OM proteins were further investigated using western blotting, genetically modified strains with gene deletion and gene complementation approaches. Our results characterized the functional OM proteins of E. coli in resistance to phenol, and provide novel insights into the mechanisms of bacterial disinfectant-tolerance and new drug targets for control of phenol-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Azachi M, Henis Y, Shapira R, Oren A (1996) The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonas sp. MAC. Microbiology 142:1249–1254

    Article  PubMed  CAS  Google Scholar 

  2. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:1–11

    Article  Google Scholar 

  3. Beher MG, Schnaitman CA, Pugsley AP (1980) Major heat-modifiable outer membrane protein in gram-negative bacteria: comparison with the OmpA protein of Escherichia coli. J Bacteriol 143:906–913

    PubMed  CAS  Google Scholar 

  4. Chiu HC, Lin TL, Wang JT (2007) Identification and characterization of an organic solvent tolerance gene in Helicobacter pylori. Helicobacter 12:74–81

    Article  PubMed  CAS  Google Scholar 

  5. Di Russo CC, Black PN (1999) Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. Mol Cell Biochem 192:41–52

    Article  Google Scholar 

  6. Gehring K, Cheng CH, Nikaido H, Jap BK (1991) Stoichiometry of maltodextrin-binding sites in lamB, an outer membrane protein from Escherichia coli. J Bacteriol 173:1873–1878

    PubMed  CAS  Google Scholar 

  7. Grodberg J, Dunn JJ (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253

    PubMed  CAS  Google Scholar 

  8. Isken S, de Bont JA (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  PubMed  CAS  Google Scholar 

  9. Keweloh H, Diefenbach R, Rehm HJ (1991) Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch Microbiol 157:49–53

    Article  PubMed  CAS  Google Scholar 

  10. Kivistik PA, Putrins M, Puvi K, Heili I, Kivisaar M, Horak R (2006) ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 188:8109–8117

    Article  PubMed  CAS  Google Scholar 

  11. Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253

    Article  PubMed  CAS  Google Scholar 

  12. Li H, Wang BC, Xu WJ, Lin XM, Peng XX (2008) Identification and network of outer membrane proteins regulating streptomysin-resistance in Escherichia coli. J Proteome Res 7:4040–4049

    Article  PubMed  CAS  Google Scholar 

  13. Liaqat I, Sabri AN (2008) Analysis of cell wall constituents of biocide-resistant isolates from dental-unit water line biofilms. Curr Microbiol 57:340–347

    Article  PubMed  CAS  Google Scholar 

  14. Lin XM, Wu LN, Li H, Peng XX (2008) Down-regulation of Tsx and OmpW and up-regulation of OmpX are required for iron homeostasis in Escherichia coli. J Proteome Res 7:1235–1243

    Article  PubMed  CAS  Google Scholar 

  15. Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM (2004) Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 127:80–93

    Article  PubMed  CAS  Google Scholar 

  16. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev 12:147–149

    PubMed  CAS  Google Scholar 

  17. NCCLS (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts (M27-A), Approved Standard, 2nd edn. NCCLS, Wayne

    Google Scholar 

  18. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  PubMed  CAS  Google Scholar 

  19. Rich GT, Comerford JG, Graham S, Dawson AP (1995) Effects of CoA and acyl-CoA on Ca(2+)-permeability of endoplasmic-reticulum membranes from rat liver. Biochem J 306:703–708

    PubMed  CAS  Google Scholar 

  20. Roma-Rodrigues C, Santos PM, Benndorf D, Rapp E, Sá-Correia I (2010) Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome. J Proteomics 73:1461–1478

    Article  PubMed  CAS  Google Scholar 

  21. Santos PM, Benndorf D, Sá-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

    Article  PubMed  CAS  Google Scholar 

  22. Santos PM, Roma V, Benndorf D, von Bergen M, Harms H, Sá-Correia I (2007) Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp. M1 revealed by quantitative proteomics. OMICS 11:233–251

    Article  PubMed  CAS  Google Scholar 

  23. Saravolac EG, Taylor NF, Benz R, Hancock RE (1991) Purification of glucose-inducible outer membrane protein OprB of Pseudomonas putida and reconstitution of glucose-specific pores. J Bacteriol 173:4970–4976

    PubMed  CAS  Google Scholar 

  24. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  PubMed  CAS  Google Scholar 

  25. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  CAS  Google Scholar 

  26. Wu LN, Lin XM, Peng XX (2009) From proteome to genome for functional characterization of pH-dependent outer membrane proteins in Escherichia coli. J Proteome Res 8:1059–1070

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by “973” (2006CB101807), RFDP (200805580038), NSFC (40876076), Guangdong NSF key project (7117645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Xian Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, DF., Li, H., Lin, XM. et al. Characterization of Outer Membrane Proteins of Escherichia Coli in Response to Phenol Stress. Curr Microbiol 62, 777–783 (2011). https://doi.org/10.1007/s00284-010-9786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9786-z

Keywords

Navigation