Skip to main content

Reduction of Couplings in Quantum Field Theories with Applications in Finite Theories and the MSSM

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 111))

Abstract

We apply the method of reduction of couplings in a Finite Unified Theory and in the MSSM. The method consists on searching for renormalization group invariant relations among couplings of a renormalizable theory holding to all orders in perturbation theory. It has a remarkable predictive power, since it leads to relations between gauge and Yukawa couplings in the dimensionless sectors and relations involving the trilinear terms and the Yukawa couplings, as well as a sum rule among scalar masses in the soft breaking sector, at the GUT scale. In both the MSSM and the FUT model we predict the masses of the top and bottom quarks and the light Higgs in remarkable agreement with the experiment. Furthermore we also predict the masses of the other Higgses, as well as the supersymmetric spectrum, the latter being in very comfortable agreement with the LHC bounds on supersymmetric particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The second term can be determined once the first term is known.

  2. 2.

    We have not yet taken into account the improved M h prediction presented in [88] (and implemented into the most recent version of FeynHiggs), which will lead to an upward shift in the Higgs boson mass prediction.

  3. 3.

    In this analysis the new M h evaluation [88] may have a relevant impact on the restrictions on the allowed SUSY parameter space shown below.

References

  1. ATLAS Collaboration, Aad, G., et al.: Phys. Lett. B716, 1 (2012). arXiv:1207.7214

    Google Scholar 

  2. ATLAS Collaboration: ATLAS-CONF-2013-014, ATLAS-COM-CONF-2013-025 (2013)

    Google Scholar 

  3. CMS Collaboration, Chatrchyan, S., et al.: Phys. Lett. B716, 30 (2012). arXiv:1207.7235

    Google Scholar 

  4. CMS Collaboration, Chatrchyan, S., et al.: (2013). arXiv:1303.4571

    Google Scholar 

  5. Pati, J.C., Salam, A.: Phys. Rev. Lett. 31, 661 (1973)

    Article  Google Scholar 

  6. Georgi, H., Glashow, S.L.: Phys. Rev. Lett. 32, 438 (1974)

    Article  Google Scholar 

  7. Georgi, H., Quinn, H.R., Weinberg, S.: Phys. Rev. Lett. 33, 451 (1974)

    Article  Google Scholar 

  8. Fritzsch, H., Minkowski, P.: Ann. Phys. 93, 193 (1975)

    Article  MathSciNet  Google Scholar 

  9. Georgi, H.: Particles and fields: Williamsburg 1974. In: Carlson, C.E. (ed.) AIP Conference Proceedings No. 23. American Institute of Physics, New York (1974)

    Google Scholar 

  10. Dimopoulos, S., Georgi, H.: Nucl. Phys. B193, 150 (1981)

    Article  Google Scholar 

  11. Sakai, N.: Zeit. Phys. C11, 153 (1981)

    Google Scholar 

  12. Amaldi, U., de Boer, W., Furstenau, H.: Phys. Lett. B260, 447 (1991)

    Article  Google Scholar 

  13. Buras, A.J., Ellis, J.R., Gaillard, M.K., Nanopoulos, D.V.: Nucl. Phys. B135, 66 (1978)

    Article  Google Scholar 

  14. Kubo, J., Mondragon, M., Olechowski, M., Zoupanos, G.: Nucl. Phys. B479, 25 (1996). arXiv:hep-ph/9512435

    Google Scholar 

  15. Kubo, J., Mondragon, M., Zoupanos, G.: Acta Phys. Polon. B27, 3911 (1997). arXiv:hep-ph/9703289

    Google Scholar 

  16. Kobayashi, T., Kubo, J., Mondragon, M., Zoupanos, G.: Acta Phys. Polon. B30, 2013 (1999)

    Google Scholar 

  17. Fayet, P.: Nucl. Phys. B149, 137 (1979)

    Article  MathSciNet  Google Scholar 

  18. Kapetanakis, D., Mondragon, M., Zoupanos, G.: Z. Phys. C60, 181 (1993). arXiv:hep-ph/9210218

    Google Scholar 

  19. Kubo, J., Mondragon, M., Zoupanos, G.: Nucl. Phys. B424, 291 (1994)

    Article  Google Scholar 

  20. Kubo, J., Mondragon, M., Tracas, N.D., Zoupanos, G.: Phys. Lett. B342, 155 (1995). arXiv:hep-th/9409003

    Google Scholar 

  21. Kubo, J., Mondragon, M., Olechowski, M., Zoupanos, G. (1995). arXiv:hep-ph/9510279

    Google Scholar 

  22. Mondragon, M., Zoupanos, G.: Nucl. Phys. Proc. Suppl. 37C, 98 (1995)

    Article  Google Scholar 

  23. Kubo, J., Mondragon, M., Zoupanos, G.: Phys. Lett. B389, 523 (1996). arXiv:hep-ph/9609218

    Google Scholar 

  24. Zimmermann, W.: Commun. Math. Phys. 97, 211 (1985)

    Article  MATH  Google Scholar 

  25. Oehme, R., Zimmermann, W.: Commun. Math. Phys. 97, 569 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lucchesi, C., Piguet, O., Sibold, K.: Helv. Phys. Acta 61, 321 (1988)

    MathSciNet  Google Scholar 

  27. Piguet, O., Sibold, K.: Int. J. Mod. Phys. A1, 913 (1986)

    Article  MathSciNet  Google Scholar 

  28. Lucchesi, C., Zoupanos, G.: Fortschr. Phys. 45, 129 (1997). arXiv:hep-ph/9604216

    Google Scholar 

  29. Jack, I., Jones, D.R.T.: Phys. Lett. B349, 294 (1995). arXiv:hep-ph/9501395

    Google Scholar 

  30. Oehme, R.: Prog. Theor. Phys. Suppl. 86, 215 (1986)

    Article  MathSciNet  Google Scholar 

  31. Kawamura, Y., Kobayashi, T., Kubo, J.: Phys. Lett. B405, 64 (1997). arXiv:hep-ph/9703320

    Google Scholar 

  32. Kobayashi, T., Kubo, J., Mondragon, M., Zoupanos, G.: Nucl. Phys. B511, 45 (1998). arXiv:hep-ph/9707425

    Google Scholar 

  33. Parkes, A., West, P.C.: Phys. Lett. B138, 99 (1984)

    Article  Google Scholar 

  34. West, P.C.: Phys. Lett. B137, 371 (1984)

    Article  Google Scholar 

  35. Jones, D.R.T., Parkes, A.J.: Phys. Lett. B160, 267 (1985)

    Article  Google Scholar 

  36. Jones, D.R.T., Mezincescu, L.: Phys. Lett. B138, 293 (1984)

    Article  Google Scholar 

  37. Parkes, A.J.: Phys. Lett. B156, 73 (1985)

    Article  MathSciNet  Google Scholar 

  38. Wess, J., Zumino, B.: Phys. Lett. B49, 52 (1974)

    Article  Google Scholar 

  39. Iliopoulos, J., Zumino, B.: Nucl. Phys. B76, 310 (1974)

    Article  Google Scholar 

  40. Fujikawa, K., Lang, W.: Nucl. Phys. B88, 61 (1975)

    Article  Google Scholar 

  41. Delbourgo, R.: Nuovo Cim. A25, 646 (1975)

    Article  Google Scholar 

  42. Salam, A., Strathdee, J.A.: Nucl. Phys. B86, 142 (1975)

    Article  MathSciNet  Google Scholar 

  43. Grisaru, M.T., Siegel, W., Rocek, M.: Nucl. Phys. B159, 429 (1979)

    Article  MathSciNet  Google Scholar 

  44. Girardello, L., Grisaru, M.T.: Nucl. Phys. B194, 65 (1982)

    Article  Google Scholar 

  45. Hisano, J., Shifman, M.A.: Phys. Rev. D56, 5475 (1997). arXiv:hep-ph/9705417

    Google Scholar 

  46. Jack, I., Jones, D.R.T.: Phys. Lett. B415, 383 (1997). arXiv:hep-ph/9709364

    Google Scholar 

  47. Avdeev, L.V., Kazakov, D.I., Kondrashuk, I.N.: Nucl. Phys. B510, 289 (1998). arXiv:hep-ph/9709397

    Google Scholar 

  48. Kazakov, D.I.: Phys. Lett. B449, 201 (1999). arXiv:hep-ph/9812513

    Google Scholar 

  49. Kazakov, D.I.: Phys. Lett. B421, 211 (1998). arXiv:hep-ph/9709465

    Google Scholar 

  50. Jack, I., Jones, D.R.T., Pickering, A.: Phys. Lett. B426, 73 (1998). arXiv:hep-ph/9712542

    Google Scholar 

  51. Novikov, V.A., Shifman, M.A., Vainshtein, A., Zakharov, V.I.: Nucl. Phys. B229, 407 (1983)

    Article  Google Scholar 

  52. Novikov, V.A., Shifman, M.A., Vainshtein, A.I., Zakharov, V.I.: Phys. Lett. B166, 329 (1986)

    Article  Google Scholar 

  53. Kobayashi, T., Kubo, J., Zoupanos, G.: Phys. Lett. B427, 291 (1998). arXiv:hep-ph/9802267

    Google Scholar 

  54. Mondragon, M., Tracas, N., Zoupanos, G.: Phys. Lett. B728, 51 (2014). arXiv:1309.0996

    Google Scholar 

  55. Jack, I., Jones, D.: Phys. Lett. B465, 148 (1999). arXiv:hep-ph/9907255

    Google Scholar 

  56. Kobayashi, T., Kubo, J., Mondragon, M., Zoupanos, G.: AIP Conf. Proc. 490, 279 (1999)

    Article  Google Scholar 

  57. Randall, L., Sundrum, R.: Nucl. Phys. B557, 79 (1999). arXiv:hep-th/9810155

    Google Scholar 

  58. Giudice, G.F., Luty, M.A., Murayama, H., Rattazzi, R.: J. High Energy Phys. 9812, 027 (1998). arXiv:hep-ph/9810442

    Google Scholar 

  59. Hodgson, R., Jack, I., Jones, D., Ross, G.: Nucl. Phys. B728, 192 (2005). arXiv:hep-ph/0507193

    Google Scholar 

  60. Carena, M.S., Olechowski, M., Pokorski, S., Wagner, C.: Nucl. Phys. B426, 269 (1994). arXiv:hep-ph/9402253

    Google Scholar 

  61. Guasch, J., Hollik, W., Penaranda, S.: Phys. Lett. B515, 367 (2001). arXiv:hep-ph/0106027

    Google Scholar 

  62. Particle Data Group, Nakamura, K., et al.: J. Phys. G37, 075021 (2010)

    Google Scholar 

  63. Carena, M.S., et al.: Nucl. Phys. B580, 29 (2000). arXiv:hep-ph/0001002

    Google Scholar 

  64. Heinemeyer, S.: Int. J. Mod. Phys. A21, 2659 (2006). arXiv:hep-ph/0407244

    Google Scholar 

  65. Heinemeyer, S., Mondragon, M., Zoupanos, G. (2012). arXiv:1201.5171

    Google Scholar 

  66. CMS Collaboration, Chatrchyan, S., et al.: Phys. Lett. B713, 68 (2012). arXiv:1202.4083

    Google Scholar 

  67. ATLAS Collaboration, Pravalorio, P.: Talk at SUSY2012 (2012)

    Google Scholar 

  68. CMS Collaboration, Campagnari, C.: Talk at SUSY2012 (2012)

    Google Scholar 

  69. Degrassi, G., Heinemeyer, S., Hollik, W., Slavich, P., Weiglein, G.: Eur. Phys. J. C28, 133 (2003). hep-ph/0212020

    Google Scholar 

  70. Jones, D.R.T., Mezincescu, L., Yao, Y.P.: Phys. Lett. B148, 317 (1984)

    Article  Google Scholar 

  71. Heinemeyer, S., Mondragon, M., Zoupanos, G. (2011). arXiv:1101.2476

    Google Scholar 

  72. Ermushev, A.V., Kazakov, D.I., Tarasov, O.V.: Nucl. Phys. B281, 72 (1987)

    Article  Google Scholar 

  73. Kazakov, D.I.: Mod. Phys. Lett. A2, 663 (1987)

    Article  Google Scholar 

  74. Leigh, R.G., Strassler, M.J.: Nucl. Phys. B447, 95 (1995). arXiv:hep-th/9503121

    Google Scholar 

  75. Shifman, M.A.: Int. J. Mod. Phys. A11, 5761 (1996). arXiv:hep-ph/9606281

    Google Scholar 

  76. Lucchesi, C., Piguet, O., Sibold, K.: Phys. Lett. B201, 241 (1988)

    Article  MathSciNet  Google Scholar 

  77. Jack, I., Jones, D.R.T.: Phys. Lett. B333, 372 (1994). hep-ph/9405233

    Google Scholar 

  78. Mondragon, M., Zoupanos, G.: J. Phys. Conf. Ser. 171, 012095 (2009)

    Article  Google Scholar 

  79. Leon, J., Perez-Mercader, J., Quiros, M., Ramirez-Mittelbrunn, J.: Phys. Lett. B156, 66 (1985)

    Article  Google Scholar 

  80. Hamidi, S., Schwarz, J.H.: Phys. Lett. B147, 301 (1984)

    Article  Google Scholar 

  81. Jones, D.R.T., Raby, S.: Phys. Lett. B143, 137 (1984)

    Article  Google Scholar 

  82. Heavy Flavour Averaging Group (2012): www.slac.stanford.edu/xorg/hfag/

  83. LHCb Collaboration, Aaij, R., et al.: Phys. Rev. Lett. 108, 231801 (2012). arXiv:1203.4493

    Google Scholar 

  84. CMS and LHCb Collaborations (2013). http://cdsweb.cern.ch/record/1374913/files/BPH-11-019-pas.pdf

  85. Heinemeyer, S., Hollik, W., Weiglein, G.: Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    Google Scholar 

  86. Heinemeyer, S., Hollik, W., Weiglein, G.: Eur. Phys. J. C9, 343 (1999). arXiv:hep-ph/9812472

    Google Scholar 

  87. Frank, M., et al.: J. High Energy Phys. 02, 047 (2007). hep-ph/0611326

    Google Scholar 

  88. Hahn, T., Heinemeyer, S., Hollik, W., Rzehak, H., Weiglein, G. (2013). arXiv:1312.4937

    Google Scholar 

  89. Heinemeyer, S., Mondragon, M., Zoupanos, G.: J. High Energy Phys. 07, 135 (2008). arXiv:0712.3630

    Google Scholar 

  90. Heinemeyer, S., Mondragon, M., Zoupanos, G. (2008). arXiv:0810.0727

    Google Scholar 

  91. Heinemeyer, S., Mondragon, M., Zoupanos, G.: J. Phys. Conf. Ser. 171, 012096 (2009)

    Article  Google Scholar 

  92. Mandelstam, S.: Nucl. Phys. B213, 149 (1983)

    Article  MathSciNet  Google Scholar 

  93. Brink, L., Lindgren, O., Nilsson, B.E.W.: Phys. Lett. B123, 323 (1983)

    Article  Google Scholar 

  94. Bern, Z., Carrasco, J.J., Dixon, L.J., Johansson, H., Roiban, R.: Phys. Rev. Lett. 103, 081301 (2009). arXiv:0905.2326

    Google Scholar 

  95. Kallosh, R.: J. High Energy Phys. 09, 116 (2009). arXiv:0906.3495

    Google Scholar 

  96. Bern, Z., et al.: Phys. Rev. Lett. 98, 161303 (2007). arXiv:hep-th/0702112

    Google Scholar 

  97. Bern, Z., Dixon, L.J., Roiban, R.: Phys. Lett. B644, 265 (2007). arXiv:hep-th/0611086

    Google Scholar 

  98. Green, M.B., Russo, J.G., Vanhove, P.: Phys. Rev. Lett. 98, 131602 (2007). arXiv:hep-th/0611273

    Google Scholar 

  99. Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

    Google Scholar 

  100. Kubo, J., Mondragon, M., Shoda, S., Zoupanos, G.: Nucl. Phys. B469, 3 (1996). arXiv:hep-ph/9512258

    Google Scholar 

  101. Buchmueller, O., et al. (2013). arXiv:1312.5233

    Google Scholar 

Download references

Acknowledgements

G.Z. thanks the Institut für Theoretische Physik, Heidelberg, for its generous support and warm hospitality. The work of G.Z. was supported by the Research Funding Program ARISTEIA, Higher Order Calculations and Tools for High Energy Colliders, HOCTools (co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF)). G.Z and N.T. acknowledge also support from the European Union’s ITN programme HIGGSTOOLS. The work of M.M. was supported by Mexican grants PAPIIT IN113712 and Conacyt 132059. The work of S.H. was supported in part by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Program under grant MultiDark CSD2009-00064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zoupanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Heinemeyer, S., Mondragón, M., Tracas, N., Zoupanos, G. (2014). Reduction of Couplings in Quantum Field Theories with Applications in Finite Theories and the MSSM. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 111. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55285-7_11

Download citation

Publish with us

Policies and ethics