Skip to main content
Log in

Reduction of couplings in a finite GUT and the MSSM

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We apply the method of reduction of couplings in a Finite Unified Theory and in the MSSM. The method consists on searching for renormalization group invariant relations among couplings of a renormalizable theory holding to all orders in perturbation theory. In both cases we predict the masses of the top and bottom quarks and the light Higgs in remarkable agreement with the experiment. Moreover, we predict the masses of the other Higgses too, as well as the supersymmetric spectrum, the latter being in very confortable agreement with the LHC bounds on supersymmetric particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Pati and A. Salam, “Is baryon number conserved?,” Phys. Rev. Lett. 31, 661–664 (1973); H. Georgi and S. L. Glashow, “Unity of all elementary particle forces,” Phys. Rev. Lett. 32, 438–441 (1974); H. Georgi, H. R. Quinn, and S. Weinberg, “Hierarchy of interactions in unified Gauge theories,” Phys. Rev. Lett. 33, 451–454 (1974); H. Fritzsch and P. Minkowski, “Unified interactions of leptons and hadrons,” Ann. Phys. 93, 193–266 (1975); H. Georgi, “Particles and Fields: Williamsburg 1974,” in AIP Conference Proceedings, No. 23, Ed. by C. E. Carlson (American Institute of Physics, New York DOI, 1974); S. Dimopoulos and H. Georgi, “Softly Broken supersymmetry and SU(5),” Nucl. Phys., Ser. B 193, 150 (1981); N. Sakai, “Naturalness in supersymmetric GUTs,” Zeit. Phys., Ser. C 11, 153 (1981).

    Article  ADS  Google Scholar 

  2. D. Kapetanakis, M. Mondragon, and G. Zoupanos, “Finite unified models,” Z. Phys., Ser. C 60, 181–186 (1993), hep-ph/9210218; J. Kubo, M. Mondragon, and G. Zoupanos, “Reduction of couplings and heavy top quark in the minimal SUSY GUT,” Nucl. Phys., Ser. B 424, 291–307 (1994); J. Kubo, M. Mondragon, N. D. Tracas, and G. Zoupanos, “Gauge-Yukawa unification in asymptotically nonfree theories,” Phys. Lett., Ser. B 342, 155–162 (1995), hep-th/9409003; J. Kubo, M. Mondragon, M. Olechowski, and G. Zoupanos, “Gauge-Yukawa unification and the top-bottom hierarchy” (1995), hep-ph/9510279; M. Mondragon and G. Zoupanos, “Finite unified theories and the top quark mass,” Nucl. Phys. Proc. Suppl., Ser. C 37, 98–105 (1995).

    Article  ADS  Google Scholar 

  3. J. Kubo, M. Mondragon, M. Olechowski, and G. Zoupanos, “Testing Gauge-Yukawa-unified models by M t,” Nucl. Phys., Ser. B 479, 25–45 (1996), hepph/9512435; J. Kubo, M. Mondragon, and G. Zoupanos, “Unification beyond GUTs: Gauge-Yukawa unification,” Acta Phys. Polon., Ser. B 27, 3911–3944 (1997), hep-ph/9703289; T. Kobayashi, J. Kubo, M. Mondragon, and G. Zoupanos, “Exact finite and Gauge-Yukawa unified theories and their predictions,” Acta Phys. Polon., Ser. B 30, 2013–2027 (1999).

    Article  ADS  Google Scholar 

  4. J. Kubo, M. Mondragon, and G. Zoupanos, “Perturbative unification of soft supersymmetry-breaking terms,” Phys. Lett., Ser. B 389, 523–532 (1996), hepph/9609218.

    Article  ADS  Google Scholar 

  5. W. Zimmermann, “Reduction in the number of coupling parameters,” Commun. Math. Phys. 97, 211 (1985); R. Oehme and W. Zimmermann, “Relation between effective couplings for asymptotically free models,” Commun. Math. Phys. 97, 569 (1985); R. Oehme, “Reduction and reparametrization of quantum field theories,” Prog. Theor. Phys. Suppl. 86, 215 (1986).

    Article  ADS  MATH  Google Scholar 

  6. C. Lucchesi, O. Piguet, and K. Sibold, “Vanishing beta functions in N = 1 supersymmetric gauge theories,” Helv. Phys. Acta 61, 321 (1988); O. Piguet and K. Sibold, “Nonrenormalization theorems of chiral anomalies and finiteness in supersymmetric Yang-Mills theories,” Int. J. Mod. Phys., Ser. A 1, 913 (1986); C. Lucchesi and G. Zoupanos, “All-order finiteness in N = 1 SYM theories: criteria and applications,” Fortschr. Phys. 45, 129–143 (1997), hep-ph/9604216.

    MathSciNet  Google Scholar 

  7. I. Jack and D. R. T. Jones, “Renormalization group invariance and universal soft supersymmetry breaking,” Phys. Lett., Ser. B 349, 294–299 (1995), hepph/9501395.

    Article  ADS  Google Scholar 

  8. Y. Kawamura, T. Kobayashi, and J. Kubo, “Soft scalar-mass sum rule in Gauge-Yukawa unified models and its superstring interpretation,” Phys. Lett., Ser. B 405, 64–70 (1997), hep-ph/9703320.

    Article  ADS  Google Scholar 

  9. T. Kobayashi, J. Kubo, M. Mondragon, and G. Zoupanos, “Constraints on finite soft supersymmetry-breaking terms,” Nucl. Phys., Ser. B 511, 45–68 (1998), hep-ph/9707425.

    Article  ADS  Google Scholar 

  10. A. Parkes and P. C. West, “Finiteness in rigid supersym-metric theories,” Phys. Lett., Ser. B 138, 99 (1984); P. C. West, “The Yukawa beta function in N = 1 rigid supersymmetric theories,” Phys. Lett., Ser. B 137, 371 (1984); D. R. T. Jones and A. J. Parkes, “Search for a three loop finite chiral theory,” Phys. Lett., Ser. B 160, 267 (1985); D. R. T. Jones and L. Mezincescu, “The chiral anomaly and a class of two loop finite supersymmetric Gauge theories,” Phys. Lett., Ser. B 138, 293 (1984); A. J. Parkes, “Three loop finiteness conditions in N = 1 Superyang-Mills,” Phys. Lett., Ser. B 156, 73 (1985).

    Article  ADS  Google Scholar 

  11. J. Wess and B. Zumino, “A Lagrangian model invariant under supergauge transformations,” Phys. Lett., Ser. B 49, 52 (1974); J. Iliopoulos and B. Zumino, “Broken supergauge symmetry and renormalization,” Nucl. Phys., Ser. B 76, 310 (1974).

    Article  ADS  Google Scholar 

  12. K. Fujikawa and W. Lang, “Perturbation calculations for the scalar multiplet in a superfield formulation,” Nucl. Phys., Ser. B 88, 61 (1975).

    Article  ADS  Google Scholar 

  13. R. Delbourgo, “Superfield perturbation theory and renormalization,” Nuovo Cim., Ser. A 25, 646 (1975); A. Salam and J. A. Strathdee, “Feynman rules for superfields,” Nucl. Phys., Ser. B 86, 142–152 (1975); M. T. Grisaru, W. Siegel, and M. Rocek, “Improved methods for supergraphs,” Nucl. Phys., Ser. B 159, 429 (1979).

    Article  ADS  Google Scholar 

  14. L. Girardello and M. T. Grisaru, “Soft breaking of supersymmetry,” Nucl. Phys., Ser. B 194, 65 (1982).

    Article  ADS  Google Scholar 

  15. J. Hisano and M. A. Shifman, “Exact results for soft supersymmetry breaking parameters in supersymmetric gauge theories,” Phys. Rev., Ser. D 56, 5475–5482 (1997), hep-ph/9705417; L. V. Avdeev, D. I. Kazakov, and I. N. Kondrashuk, “Renormalizations in softly broken SUSY Gauge theories,” Nucl. Phys., Ser. B 510, 289–312 (1998), hep-ph/9709397; D. I. Kazakov, “Exploring softly broken SUSY theories via grassmannian Taylor expansion,” Phys. Lett., Ser. B 449, 201–206 (1999), hep-ph/9812513.

    Article  ADS  Google Scholar 

  16. I. Jack and D. R. T. Jones, “The gaugino beta-function,” Phys. Lett., Ser. B 415, 383–389 (1997), hepph/9709364.

    Article  ADS  Google Scholar 

  17. D. I. Kazakov, “Finiteness of soft terms in finite N = 1 SUSY Gauge theories,” Phys. Lett., Ser. B 421, 211–216 (1998), hep-ph/9709465; I. Jack, D. R. T. Jones, and A. Pickering, “Renormalisation invariance and the soft beta functions,” Phys. Lett., Ser. B 426, 73–77 (1998), hep-ph/9712542.

    Article  ADS  MathSciNet  Google Scholar 

  18. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Instanton effects in supersymmetric theories,” Nucl. Phys., Ser. B 229, 407 (1983); V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Beta function in supersymmetric Gauge theories: instantons versus traditional approach,” Phys. Lett., Ser. B 166, 329–333 (1986).

    Article  ADS  Google Scholar 

  19. T. Kobayashi, J. Kubo, and G. Zoupanos, “Further all-loop results in softly-broken super-symmetric Gauge theories,” Phys. Lett., Ser. B 427, 291–299 (1998), hep-ph/9802267.

    Article  ADS  Google Scholar 

  20. M. Mondragón, N. Tracas, and G. Zoupanos, “Reduction of couplings in the MSSM,” Phys. Lett., Ser. B 728, 51–57 (2014), 1309.0996.

    Article  ADS  Google Scholar 

  21. I. Jack and D. Jones, “RG invariant solutions for the soft supersymmetry breaking parameters,” Phys. Lett., Ser. B 465, 148–154 (1999), hep-ph/9907255.

    Article  ADS  Google Scholar 

  22. T. Kobayashi, J. Kubo, M. Mondragon, and G. Zoupanos, “Finite and Gauge-Yukawa unified theories: theory and predictions,” AIP Conf. Proc. 490, 279–309 (1999).

    Article  ADS  Google Scholar 

  23. L. Randall and R. Sundrum, “Out of this world super-symmetry breaking,” Nucl. Phys., Ser. B 557, 79–118 (1999), hep-th/9810155.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. Hodgson, I. Jack, D. Jones, and G. Ross, “Anomaly mediation, Fayet-Iliopoulos D-terms and precision sparticle spectra,” Nucl. Phys., Ser. B 728, 192–206 (2005), hep-ph/0507193.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. S. Carena, M. Olechowski, S. Pokorski, and C. Wagner, “Electroweak symmetry breaking and bottom-top Yukawa unification,” Nucl. Phys., Ser. B 426, 269–300 (1994), hep-ph/9402253; J. Guasch, W. Hollik, and S. Penaranda, “Distinguishing Higgs models in H→b anti-b/H→tau+ tau,” Phys. Lett., Ser. B 515, 367–374 (2001), hep-ph/0106027.

    Article  ADS  Google Scholar 

  26. K. Nakamura et al., “Review of particle physics,” J. Phys., Ser. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  27. M. S. Carena, H. Haber, S. Heinemeyer, et al., “Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP—even Higgs boson in the MSSM,” Nucl. Phys. J., Ser. B 580, 29–57 (2000), hep-ph/0001002; S. Heinemeyer, “MSSM Higgs physics at higher orders,” Int. J. Mod. Phys., Ser. A 21, 2659–2772 (2006), hep-ph/0407244.

    Article  ADS  Google Scholar 

  28. S. Heinemeyer, M. Mondragon, and G. Zoupanos, “Finite unified theories and the Higgs boson,” 1201.5171 (2012).

    Google Scholar 

  29. S. Chatrchyan et al., “Search for neutral Higgs bosons decaying to tau pairs in pp collisions at sqrt(s) = 7 TeV,” Phys. Lett., Ser. B 713, 68–90 (2012), 1202.4083; P. Pravalorio, “SUSY searches at ATLAS,” in SUSY2012 (2012); C. Campagnari, “SUSY searches at CMS,” in SUSY2012 (2012).

    Article  ADS  Google Scholar 

  30. G. Degrassi, S. Heinemeyer, W. Hollik, et al., “Towards high-precision predictions for the MSSM Higgs sector,” Eur. Phys. J., Ser. C 28, 133–143 (2003), hep-ph/0212020.

    Article  ADS  Google Scholar 

  31. G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett., Ser. B 716, 1–29 (2012), 1207.7214; “Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb-1 of proton-proton collision data,” in ATLAS-CONF-2013-014, ATLAS-COM-CONF-2013-025 (2013); S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett., Ser. B 716, 30–61 (2012), 1207.7235; S. Chatrchyan et al., “Observation of a new boson with mass near 125 GeV in pp collisions at sqrt(s) = 7 and 8 TeV,” 2013, 1303.4571.

    Article  ADS  Google Scholar 

  32. D. R. T. Jones, L. Mezincescu, and Y. P. Yao, “Soft breaking of two loop finite N = 1 supersymmetric Gauge theories,” Phys. Lett., Ser. B 148, 317–322 (1984).

    Article  ADS  Google Scholar 

  33. S. Heinemeyer, M. Mondragon, and G. Zoupanos, “Finite unification: theory, models and predictions,” 1101.2476 (2011).

    Google Scholar 

  34. A. V. Ermushev, D. I. Kazakov, and O. V. Tarasov, “Finite N = 1 Supersymmetric Grand Unified Theories,” Nucl. Phys., Ser. B 281, 72–84 (1987); D. I. Kazakov, “Finite N = 1 SUSY gauge field theories,” Mod. Phys. Lett., Ser. A 2, 663–674 (1987); R. G. Leigh and M. J. Strassler, “Exactly marginal operators and duality in four-dimensional N = 1 super-symmetric gauge theory,” Nucl. Phys., Ser. B 447, 95–136 (1995), hep-th/9503121.

    Article  ADS  Google Scholar 

  35. M. A. Shifman, “Little miracles of supersymmetric evolution of gauge couplings,” Int. J. Mod. Phys., Ser. A 11, 5761–5784 (1996), hep-ph/9606281.

    Article  ADS  Google Scholar 

  36. C. Lucchesi, O. Piguet, and K. Sibold, “Necessary and sufficient conditions for all order vanishing beta functions in supersymmetric Yang-Mills theories,” Phys. Lett., Ser. B 201, 241 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Jack and D. R. T. Jones, “Soft supersymmetry breaking and finiteness,” Phys. Lett., Ser. B 333, 372–379 (1994), hep-ph/9405233.

    Article  ADS  Google Scholar 

  38. M. Mondragon and G. Zoupanos, “Finite unified theories,” J. Phys. Conf. Ser. 171, 012095 (2009).

    Article  ADS  Google Scholar 

  39. J. Leon, J. Perez-Mercader, M. Quiros, and J. Ramirez-Mittelbrunn, “A sensible finite SU(5) susy GUT?,” Phys. Lett., Ser. B 156, 66 (1985); S. Hamidi and J. H. Schwarz, “A realistic Finite Unified Theory?,” Phys. Lett., Ser. B 147, 301 (1984); D. R. T. Jones and S. Raby, “A two loop finite supersymmetric SU(5) theory: towards a theory of fermion masses,” Phys. Lett., Ser. B 143, 137 (1984).

    Article  ADS  Google Scholar 

  40. Heavy Flavour Averaging Group, www.slac.stanford.edu/xorg/hfag/.

  41. R. Aaij et al., “Strong constraints on the rare decays B s → μ+μ and B 0 → μ+μ,” Phys. Rev. Lett. 108, 231801 (2012), 1203.4493.

    Article  ADS  Google Scholar 

  42. CMS and LHCb Collab., http://cdsweb.cern.ch/record/1374913/files/BPH-11-019-pas.pdf.

  43. S. Heinemeyer, W. Hollik, and G. Weiglein, “Feyn-Higgs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM,” Comput. Phys. Commun. 124, 76–89 (2000), hepph/9812320; S. Heinemeyer, W. Hollik, and G. Weiglein, “The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two-loop level,” Eur. Phys. J., Ser. C 9, 343–366 (1999), hep-ph/9812472; M. Frank et al., “The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach,” JHEP 02, 047 (2007), hep-ph/0611326.

    Article  ADS  MATH  Google Scholar 

  44. T. Hahn, S. Heinemeyer, W. Hollik, et al., “High-precision predictions for the light CP-even Higgs boson mass of the MSSM,” 1312.4937 (2013).

    Google Scholar 

  45. S. Heinemeyer, M. Mondragon, and G. Zoupanos, “Confronting finite unified theories with low-energy phenomenology,” JHEP 07, 135 (2008), 0712.3630; S. Heinemeyer, M. Mondragon, and G. Zoupanos, “Finiteness and the Higgs mass prediction,” 0810.0727 (2008); S. Heinemeyer, M. Mondragon, and G. Zoupanos, “Phenomenology of SU(5) finite unified theories,” J. Phys. Conf. Ser. 171, 012096 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Heinemeyer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinemeyer, S., Mondragón, M., Tracas, N. et al. Reduction of couplings in a finite GUT and the MSSM. Phys. Part. Nuclei Lett. 11, 910–919 (2014). https://doi.org/10.1134/S1547477114070231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114070231

Keywords

Navigation