Skip to main content

Blossom-End Rot in Fruit Vegetables

  • Chapter
  • First Online:
Abiotic Stress Biology in Horticultural Plants

Abstract

Calcium (Ca) is an essential element for plant growth, as calcium deficiency causes various disorders in some types of horticultural crops. The most significant calcium deficiency disorder is blossom-end rot (BER) of fruit vegetables. In tomato (Solanum lycopersicum), one of the most important vegetables in the world, the incidence of BER often becomes a serious problem in agricultural production and results in financial losses. The typical external symptoms of BER in tomato are water-soaked tissues, necrosis, and discoloring of tissues in the distal portion of the fruit. BER develops in the necrotic region of the parenchymal tissue surrounding young seeds and the distal placenta in the internal tissue of the fruit. The symptoms and causes of BER have been extensively studied, and BER is assumed to be related to Ca deficiency of the fruit. Here, we reviewed symptoms and physiological mechanisms of BER that are related to Ca concentration in fruit tissue and focus on recent molecular genetic research on tomato BER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P, Ho LC (1992) The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. J Hortic Sci 67:827–839

    CAS  Google Scholar 

  • Aktas H, Karni L, Chang D-C, Turhan E, Bar-Tal A, Aloni B (2005) The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiol Plant 123:67–74

    Article  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belda R, Ho LC (1993) Salinity effects on the network of vascular bundles during tomato fruit development. J Hortic Sci 68:557–564

    Google Scholar 

  • Belda RM, Fenlon JS, Ho LC (1996) Salinity effects on the xylem vessels in tomato fruit among cultivars with different susceptibilities to blossom end rot. J Hortic Sci 71:173–179

    Google Scholar 

  • Bradfield EG, Guttridge CG (1984) Effects of night-time humidity and nutrient solution concentration on the calcium content of tomato fruit. Sci Hortic 22:207–217

    Article  CAS  Google Scholar 

  • Catalá C, Rose JKC, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng NH, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt DE, Hirschi KD (2005) Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol 138:2048–2060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298

    Article  CAS  Google Scholar 

  • De Freitas ST, Padda M, Wu Q, Park S, Mitcham EJ (2011) Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol 156:844–855

    Article  Google Scholar 

  • De Freitas ST, Handa AK, Wu Q, Park S, Mitcham EJ (2012) Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J 71:824–835

    Article  PubMed  Google Scholar 

  • Demarty M, Morvan C, Thellier M (1984) Calcium and the cell wall. Plant Cell Environ 7:441–448

    Article  CAS  Google Scholar 

  • Eggink PM, Tikunov Y, Maliepaard C, Haanstra JP, de Rooij H, Vogelaar A, Gutteling EW, Freymark G, Bovy AG, Visser RG (2014) Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theor Appl Genet 127:373–390

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics 141:1147–1162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eshed Y, Abu-Abied M, Zamir D (1992) Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theor Appl Genet 83:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Gera G, Zamir D (1996) A genome-wide search for wild species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93:877–886

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Gur A, Osorio S, Fridman E, Fernie AR, Zamir D (2010) hi2-1, a QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes. Theor Appl Genet 121:1587–1599

    Article  PubMed Central  PubMed  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot 95:571–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho LC, Belda R, Brown M, Andrews J, Adams P (1993) Uptake and transport of calcium and the possible causes of blossom-end rot in tomato. J Exp Bot 44:509–518

    Article  CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991) Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. J Exp Bot 42:1105–1116

    Article  CAS  Google Scholar 

  • Kirkby EA, Pilbeam DJ (1984) Calcium as a plant nutrient. Plant Cell Environ 7:397–405

    Article  CAS  Google Scholar 

  • Koenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie AR, Peng J, Sinha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci USA 110:E2655–E2662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  CAS  PubMed  Google Scholar 

  • Manohar M, Shigaki T, Hirschi KD (2011) Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations. Plant Biol 13:561–569

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed Central  PubMed  Google Scholar 

  • Michael JA, Kirkby EA (1979) Estimation of potassium recirculation in tomato plants by comparison of the rates of potassium and calcium accumulation in the tops with their fluxes in the xylem stream. Plant Physiol 63:1143–1148

    Article  Google Scholar 

  • Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282

    Article  Google Scholar 

  • Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005a) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139:1194–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park S, Kang TS, Kim CK, Han JS, Kim S, Smith RH, Pike LM, Hirschi KD (2005b) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53:5598–5603

    Article  CAS  PubMed  Google Scholar 

  • Picchioni GA, Watada AE, Conway WS, Whitaker BD, Sams CE (1998) Postharvest calcium infiltration delays membrane lipid catabolism in apple fruit. J Agric Food Chem 46:2452–2457

    Article  CAS  Google Scholar 

  • Saito T, Fukuda N, Nishimura S (2006) Effects of salinity, planting density and lateral shoot leaves under truss on yield and total soluble solids of tomato fruits grown in hydroponics. Hortic Res 5:415–419

    Article  Google Scholar 

  • Saure MC (2001) Blossom-end rot of tomato (Lycopersicon esculentum Mill.) a calcium or a stress related disorder? Sci Hortic 90:193–208

    Article  CAS  Google Scholar 

  • Shigaki T, Rees I, Nakhleh L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63:815–825

    Article  CAS  PubMed  Google Scholar 

  • Silber A, Bruner M, Kenig E, Reshef G, Zohar H, Posalski I, Yehezkel H, Shmuel D, Cohen S, Dinar M, Matan E, Dinkin I, Cohen Y, Karni L, Aloni B, Assouline S (2005) High fertigation frequency and phosphorus level: effects on summer-grown bell pepper growth and blossom-end rot incidence. Plant Soil 270:135–146

    Article  CAS  Google Scholar 

  • Taylor MD, Locascio SJ (2004) Blossom-end rot: a calcium deficiency. J Plant Nutr 27:123–139

    Article  CAS  Google Scholar 

  • Thabuis A, Palloix A, Servin B, Daubèze AM, Signoret P, Hospital F, Lefebvre V (2004) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14:9–20

    Article  CAS  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature (Lond) 485:635–641

    Article  Google Scholar 

  • Uozumi A, Ikeda H, Hiraga M, Kanno H, Nanzyo M, Nishiyama M, Kanahama K, Kanayama Y (2012) Tolerance to salt stress and blossom-end rot in an introgression line, IL8-3, of tomato. Sci Hortic 138:1–6

    Article  CAS  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    CAS  PubMed  Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171–189

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168:167–173

    Article  CAS  PubMed  Google Scholar 

  • Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Ms. Ai Uozumi for providing the picture in Fig. 9.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ikeda, H., Kanayama, Y. (2015). Blossom-End Rot in Fruit Vegetables. In: Kanayama, Y., Kochetov, A. (eds) Abiotic Stress Biology in Horticultural Plants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55251-2_9

Download citation

Publish with us

Policies and ethics