Skip to main content

ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

ST3Gal5 (GM3 synthase) was identified as the primary sialyltransferase responsible for the biosynthesis of ganglio-series gangliosides (Ishii et al. 1998; Kono et al. 1998; Fukumoto et al. 1999; Kapitonov et al. 1999). Ganglioside GM3 serves as a common precursor for complex gangliosides such as the a- and b-series gangliosides (Fig. 61.1). In addition, it was recently demonstrated that ST3Gal5 catalyzes GM4 synthesis in vivo (Chisada et al. 2009). Gangliosides are believed to form membrane microdomains (lipid rafts) that, with cholesterol and sphingomyelin, function as platforms for effective signal transduction in the plasma membrane (Simons and Gerl 2010) and participate in the regulation of numerous cellular processes, such as proliferation, differentiation, and adhesion (Hakomori 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts JM, Ottenhoff R, Powlson AS, Grefhorst A, van Eijk M, Dubbelhuis PF, Aten J, Kuipers F, Serlie MJ, Wennekes T, Sethi JK, O’Rahilly S, Overkleeft HS (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349

    Article  CAS  PubMed  Google Scholar 

  • Berselli P, Zava S, Sottocornola E, Milani S, Berra B, Colombo I (2006) Human GM3 synthase: a new mRNA variant encodes an NH2-terminal extended form of the protein. Biochim Biophys Acta 1759:348–358

    Article  CAS  PubMed  Google Scholar 

  • Bremer E, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984) Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259:6818–6825

    CAS  PubMed  Google Scholar 

  • Chisada S, Yoshimura Y, Sakaguchi K, Uemura S, Go S, Ikeda K, Uchima H, Matsunaga N, Ogura K, Tai T, Okino N, Taguchi R, Inokuchi J, Ito M (2009) Zebrafish and mouse a2,3-sialyltransferases responsible for synthesizing GM4 ganglioside. J Biol Chem 284:30534–30546

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Chung TW, Kang NY, Kim KS, Lee YC, Kim CH (2003) Transcriptional regulation of the human GM3 synthase (hST3Gal V) gene during monocytic differentiation of HL-60 cells. FEBS Lett 555:204–208

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Chung TW, Kang NY, Kim KS, Lee YC, Kim CH (2004) Involvement of CREB in the transcriptional regulation of the human GM3 synthase (hST3Gal V) gene during megakaryocytoid differentiation of human leukemia K562 cells. Biochem Biophys Res Commun 313:142–147

    Article  CAS  PubMed  Google Scholar 

  • Coskun Ãœ, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108:9044–9048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67

    Article  PubMed  Google Scholar 

  • Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

    Article  CAS  PubMed  Google Scholar 

  • Fragaki K, Ait-El-Mkadem S, Chaussenot A, Gire C, Mengual R, Bonesso L, Bénéteau M, Ricci JE, Desquiret-Dumas V, Procaccio V, Rötig A, Paquis-Flucklinger V (2013) Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur J Hum Genet 21:528–534

    Google Scholar 

  • Fukumoto S, Miyazaki H, Goto G, Urano T, Furukawa K, Furukawa K (1999) Expression cloning of mouse cDNA of CMP-NeuAc:lactosylceramide a2,3-sialyltransferase, an enzyme that initiates the synthesis of gangliosides. J Biol Chem 274:9271–9276

    Article  CAS  PubMed  Google Scholar 

  • Giraudo CG, Maccioni HJ (2003a) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol Biol Cell 14:3753–3766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giraudo CG, Maccioni HJ (2003b) Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem 278:40262–40271

    Article  CAS  PubMed  Google Scholar 

  • Giraudo CG, Daniotti JL, Maccioni HJ (2001) Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci U S A 98:1625–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Go S, Yoshikawa M, Inokuchi J (2011) Glycoconjugates in the mammalian sauditory system. J Neurochem 116:756–763

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Móuton C et al (2001) Segregation of leading-edge and uropod componentsinto specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98:9642–9647

    Article  PubMed Central  PubMed  Google Scholar 

  • Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265:18713–18716

    CAS  PubMed  Google Scholar 

  • Hakomori S (2004) Glycosynapses: microdomains controlling carbohydratedependent cell adhesion and signaling. Ann Acad Bras Cienc 76:553–572

    Article  CAS  Google Scholar 

  • Harder T, Rentero C, Zech T, Gaus K (2007) Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19:470–475

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi J (2010) Membrane microdomains and insulin resistance. FEBS Lett 584:1864–1871

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi J (2011a) Physiopathological function of hematoside (GM3 ganglioside). Proc Jpn Acad Ser B 87:179–198

    Article  CAS  Google Scholar 

  • Inokuchi J (2011b) Inhibition of ganglioside biosynthesis as a novel therapeutic approach in insulin resistance. Handb Exp Pharmacol 203:165–178, Springer

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi J, Kabayama K (2008) Modulation of growth factor receptors in membrane microdomains. Trends in Glycosci Glycotech 20:353–371

    Article  CAS  Google Scholar 

  • Inokuchi J, Radin N (1987) Preparation of the active isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibitor of murine glucocerebroside synthetase. J Lipid Res 28:565–571

    CAS  PubMed  Google Scholar 

  • Inokuchi J, Nagafuku M, Ohno I, Suzuki A (2013) Heterogeneity of gangliosides among T cell subsets. Cell Mol Life Sci (in press)

    Google Scholar 

  • Ishii A, Ohta M, Watanabe Y, Matsuda K, Ishiyama K, Sakoe K, Nakamura M, Inokuchi J, Sanai Y, Saito M (1998) Expression cloning and functional characterization of human cDNA for ganglioside GM3 synthase. J Biol Chem 273:31652–31655

    Article  CAS  PubMed  Google Scholar 

  • Kabayama K, Sato T, Kitamura F, Uemura S, Kang BW, Igarashi Y, Inokuchi J (2005) TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology 15:21–29

    Article  CAS  PubMed  Google Scholar 

  • Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104:13678–13683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapitonov D, Bieberich E, Yu RK (1999) Combinatorial PCR approach to homology-based cloning: cloning and expression of mouse and human GM3-synthase. Glycoconj J 16:337–350

    Article  CAS  PubMed  Google Scholar 

  • Kim KW, Kim SW, Min KS, Kim CH, Lee YC (2001) Genomic structure of human GM3 synthase gene (hST3Gal V) and identification of mRNA isoforms in the 5′-untranslated region. Gene 273:163–171

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Lee SH, Kim KS, Kim CH, Choo YK, Lee YC (2002) Isolation and characterization of the promoter region of the human GM3 synthase gene. Biochim Biophys Acta 1578:84–89

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Hakomori S (1991) Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein. Glycobiology 1:623–630

    Article  CAS  PubMed  Google Scholar 

  • Kono M, Takashima S, Liu H, Inoue M, Kojima N, Lee YC, Hamamoto T, Tsuji S (1998) Molecular cloning and functional expression of a fifth-type alpha 2,3-sialyltransferase (mST3Gal V:GM3 synthase). Biochem Biophys Res Commun 253:170–175

    Article  CAS  PubMed  Google Scholar 

  • Kovacs B et al (2002) Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proc Natl Acad Sci U S A 99:15006–15011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34

    Article  CAS  PubMed  Google Scholar 

  • Meivar-Levy I, Sabanay H, Bershadsky AD, Futerman AH (1997) Up-regulation of neutral glycosphingolipid synthesis upon long term inhibition of ceramide synthesis by fumonisin B1. J Biol Chem 272:1558–1564

    Article  CAS  PubMed  Google Scholar 

  • Melkerson-Watson LJ, Sweeley CC (1991) Purification to apparent homogeneity by immunoaffinity chromatography and partial characterization of the GM3 ganglioside-forming enzyme, CMP-sialic acid:lactosylceramide a2,3-sialyltransferase (SAT-1), from rat liver Golgi. J Biol Chem 266:4448–4457

    CAS  PubMed  Google Scholar 

  • Nagafuku M, Okuyama K, Onimaru Y, Suzuki A, Odagiri Y, Yamashita T, Iwasaki K, Fujiwara M, Takayanagi M, Ohno I, Inokuchi J (2012) CD4 and CD8 T cells require different membrane gangliosides for activation. Proc Natl Acad Sci U S A 109:E336–E342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nojiri H, Takaku F, Tetsuka T, Motoyoshi K, Miura Y, Saito M (1984) Neolacto-series gangliosides induce granulocytic differentiation of human promyelocytic leukemia cell line HL-60. Blood 64:534–541

    CAS  PubMed  Google Scholar 

  • Nojiri H, Takaku F, Terui Y, Miura Y, Saito M (1986) Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc Natl Acad Sci U S A 83:782–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preuss U, Gu X, Gu T, Yu RK (1993) Purification and Characterization of CMP-N-acetylneuraminic acid:lactosylceramide (a2-3) sialyltransferase (GM3-synthase) from rat brain. J Biol Chem 268:26273–26278

    CAS  PubMed  Google Scholar 

  • Sato T, Nihei Y, Nagafuku M, Tagami S, Chin R, Kawamura M, Miyazaki S, Suzuki M, Sugahara S, Takahashi Y, Saito A, Igarashi Y, Inokuchi J (2008) Circulating levels of Ganglioside GM3 in metabolic syndrome: a pilot study. Obes Res Clin Pract 2:231–238

    Article  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:689–699

    Article  Google Scholar 

  • Simpson M, Cross H, Proukakis C et al (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 11:1225–1229

    Article  Google Scholar 

  • Tagami S, Inokuchi J, Kabayama S, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

    Article  CAS  PubMed  Google Scholar 

  • Uemura S, Kurose T, Suzuki T, Yoshida S, Ito M, Saito M, Igarashi Y, Inokuchi J (2006) Substitution of the N-glycan Function in Glycosyltransferases by Specific Amino Acids (SUNGA): ST3Gal-V as a model enzyme. Glycobiology 16:258–270

    Article  CAS  PubMed  Google Scholar 

  • Uemura S, Yoshida S, Shishido F, Inokuchi J (2009) The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 20:3088–3100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uliana AS, Crespo PM, Martina JA, Daniotti JL, Maccioni HJ (2006) Modulation of GalT1 and SialT1 sub-Golgi localization by SialT2 expression reveals an organellar level of glycolipid synthesis control. J Biol Chem 281:32852–32860

    Article  CAS  PubMed  Google Scholar 

  • van Eijk M, Aten J, Bijl N, Ottenhoff R, van Roomen CP, Dubbelhuis PF, Seeman I, Ghauharali-van der Vlugt K, Overkleeft HS, Arbeeny C, Groen AK, Aerts JM (2009) Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS One 4:e4723

    Article  PubMed Central  PubMed  Google Scholar 

  • Xia T, Zeng G, Gao L, Yu RK (2005) Sp1 and AP2 enhance promoter activity of the mouse GM3-synthase gene. Gene 351:109–118

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N, SandhoffR SK, Proia RL (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A 100:3445–3449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa M, Go S, Takasaki KY, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, Kimitsuki T, Matsumoto N, Komune S, Kamei D, Saito M, Fujiwara M, Iwasaki K, Inokuchi J (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106:9483–9488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng G, Gao L, Xia T, Tencomnao T, Yu RK (2003) Characterization of the 5′-flanking fragment of the human GM3-synthase gene. Biochim Biophys Acta 1625:30–35

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Przybylska M, Wu IH, Zhang J, Siegel C, Komarnitsky S, Yew NS, Cheng SH (2007) Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56:1210–1218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ichi Inokuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Inokuchi, Ji., Uemura, S. (2014). ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_61

Download citation

Publish with us

Policies and ethics