Skip to main content

ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 1 (ST3GAL1)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

Sialyltransferases which add sialic acid with α2,3-, α2,6-, or α2,8-linkages contribute to the terminal of carbohydrate structures and functions of cell surface molecules including glycolipids and glycoproteins (Tsuji et al. 1996; Harduin-Lepers et al. 2001; Audry et al. 2011). Glycans with α2,3-linked sialic acids present on cell surface are known as receptors of viruses such as influenza viruses and target molecules of siglecs, which contain an immunoglobulin domain with lectin activity capturing sialic acids. So far, there are six α2,3-sialyltransferases in mammal genome. The first cDNA of ST3GAL1 was cloned based on the deduced peptide sequences of purified α2,3-sialyltransferase from porcine liver (Gillespie et al. 1992), and orthologues have been found in many vertebrate genomes. Since ST3GAL1 has a strict acceptor specificity toward type III glycans (Galβ1→3GalNAc), ST3GAL1 predominantly adds sialic acid to the core 1 O-glycan, Galβ1→3GalNAc→Ser/Thr, which is a major core structure of mucin-type O-glycans. For instance, the resulting oligosaccharide product is a sialylated core 1 O-glycan, NeuAcα2→3Galβ1→3GalNAc→Ser/Thr, which is also further sialylated by certain α2,6-sialyltransferases, generating a fully sialylated tetrasaccharide: NeuAcα2→3Galβ1→3(NeuAcα2→6)GalNAc→Ser/Thr (Fig. 57.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C (2011) Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 21:716–726

    Article  CAS  PubMed  Google Scholar 

  • Angata K, Yen TY, El-Battari A, Macher BA, Fukuda M (2001) Unique disulfide bond structures found in ST8Sia IV polysialyltransferase are required for its activity. J Biol Chem 276:15369–15377

    Article  CAS  PubMed  Google Scholar 

  • Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Seilhamer JJ (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181:877–887

    Article  CAS  PubMed  Google Scholar 

  • Burchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L, Clausen H, Miles D, Taylor-Papadimitriou J (1999) An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 9:1307–1311

    Article  CAS  PubMed  Google Scholar 

  • Dalziel M, Whitehouse C, McFarlane I, Brockhausen I, Gschmeissner S, Schwientek T, Clausen H, Burchell JM, Taylor-Papadimitriou J (2001) The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem 276:11007–11015

    Article  CAS  PubMed  Google Scholar 

  • Datta AK, Chammas R, Paulson JC (2001) Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond. J Biol Chem 276:15200–15207

    Article  CAS  PubMed  Google Scholar 

  • Ellies LG, Sperandio M, Underhill GH, Yousif J, Smith M, Priatel JJ, Kansas GS, Ley K, Marth JD (2002) Sialyltransferase specificity in selectin ligand formation. Blood 100:3618–3625

    Article  CAS  PubMed  Google Scholar 

  • Gillespie W, Kelm S, Paulson JC (1992) Cloning and expression of Gal β1,3GalNAc α 2,3- sialyltransferase. J Biol Chem 267:21004–21010

    CAS  PubMed  Google Scholar 

  • Gillespie W, Paulson JC, Kelm S, Pang M, Baum LG (1993) Regulation of α2,3- sialyltransferase expression correlates with conversion of peanut agglutinin (PNA) + to PNA- phenotype in developing thymocytes. J Biol Chem 268:3801–3804

    CAS  PubMed  Google Scholar 

  • Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P (2001) The human sialyltransferase family. Biochimie 83:727–737

    Article  CAS  PubMed  Google Scholar 

  • Jeanneau C, Chazalet V, Augé C, Soumpasis DM, Harduin-Lepers A, Delannoy P, Imberty A, Breton C (2004) Structure-function analysis of the human sialyltransferase ST3Gal I: role of n-glycosylation and a novel conserved sialylmotif. J Biol Chem 279:13461–13468

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H, Paulson JC (1994) Differential expression of five sialyltransferase genes in human tissues. J Biol Chem 269:17872–17878

    CAS  PubMed  Google Scholar 

  • Kono M, Ohyama Y, Lee YC, Hamamoto T, Kojima N, Tsuji S (1997) Mouse beta-galactoside alpha 2,3-sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression. Glycobiology 7:469–479

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa N, Hamamoto T, Inoue M, Tsuji S (1995) Molecular cloning and expression of chick Gal β1,3GalNAc α2,3-sialyltransferase. Biochim Biophys Acta 1244:216–222

    Article  PubMed  Google Scholar 

  • Lantéri M, Giordanengo V, Hiraoka N, Fuzibet JG, Auberger P, Fukuda M, Baum LG, Lefebvre JC (2003) Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology 13:909–918

    Article  PubMed  Google Scholar 

  • Lee YC, Kurosawa N, Hamamoto T, Nakaoka T, Tsuji S (1993) Molecular cloning and expression of Gal β1,3GalNAc α2,3-sialyltransferase from mouse brain. Eur J Biochem 216:377–385

    Article  CAS  PubMed  Google Scholar 

  • Picco G, Julien S, Brockhausen I, Beatson R, Antonopoulos A, Haslam S, Mandel U, Dell A, Pinder S, Taylor-Papadimitriou J, Burchell J (2010) Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology 20:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Piller F, Piller V, Fox RI, Fukuda M (1988) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem 263:15146–15150

    CAS  PubMed  Google Scholar 

  • Priatel JJ, Chui D, Hiraoka N, Simmons CJ, Richardson KB, Page DM, Fukuda M, Varki NM, Marth JD (2000) The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12:273–283

    Article  CAS  PubMed  Google Scholar 

  • Rao FV, Rich JR, Rakic B, Buddai S, Schwartz MF, Johnson K, Bowe C, Wakarchuk WW, Defrees S, Withers SG, Strynadka NC (2009) Structural insight into mammalian sialyltransferases. Nat Struct Mol Biol 16:1186–1188

    Article  CAS  PubMed  Google Scholar 

  • Skrincosky D, Kain R, El-Battari A, Exner M, Kerjaschki D, Fukuda M (1997) Altered Golgi localization of core 2 beta-1,6-N-acetylglucosaminyltransferase leads to decreased synthesis of branched O-glycans. J Biol Chem 272:22695–22702

    Article  CAS  PubMed  Google Scholar 

  • Sproviero D, Julien S, Burford B, Taylor-Papadimitriou J, Burchell JM (2012) Cyclooxygenase-2 enzyme induces the expression of the α-2,3-sialyltransferase-3 (ST3Gal-I) in breast cancer. J Biol Chem 287:44490–44497

    Article  CAS  PubMed  Google Scholar 

  • Sturgill ER, Aoki K, Lopez PH, Colacurcio D, Vajn K, Lorenzini I, Majic S, Yang WH, Heffer M, Tiemeyer M, Marth JD, Schnaar RL (2012) Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology 22:1289–1301

    Article  CAS  PubMed  Google Scholar 

  • Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Datta AK, Paulson JC (1996) Systematic nomenclature for sialyltransferases. Glycobiology 6:v–vii

    Article  CAS  PubMed  Google Scholar 

  • Van Dyken SJ, Green RS, Marth JD (2007) Structural and mechanistic features of protein O glycosylation linked to CD8+ T-cell apoptosis. Mol Cell Biol 27:1096–1111

    Article  PubMed Central  PubMed  Google Scholar 

  • Videira PA, Correia M, Malagolini N, Crespo HJ, Ligeiro D, Calais FM, Trindade H, Dall’Olio F (2009) ST3Gal. I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer 9:357

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitehouse C, Burchell J, Gschmeissner S, Brockhausen I, Lloyd KO, Taylor-Papadimitriou J (1997) A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2-based O-glycans. J Cell Biol 137:1229–1241

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohiko Angata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Angata, K., Fukuda, M. (2014). ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 1 (ST3GAL1). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_27

Download citation

Publish with us

Policies and ethics