Skip to main content

Cerebrolysin® protects isolated cortical neurons from neurodegeneration after brief histotoxic hypoxia

  • Conference paper
Ageing and Dementia

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 53))

Summary

A brief period of histotoxic hypoxia exhibits certain metabolic features resembling the in vivo situation of ischemia. In this study the neuroprotective effects of the peptidergic nootropic drug Cerebrolysin® (Cere) against iodoacetate induced histotoxic hypoxia were investigated. For that purpose isolated cortical neurons from 9 day chicken embryos were pre-cultured with 0 to 6.4mg.Cere/ml medium. At the 8th day in vitro histotoxic hypoxia was induced by incubation with 0.01 or 0.1mM iodoacetate. Cells were allowed to recover from toxic stress for 3, 6, 24 or 48 hours. Cere protected neurons dose dependently from delayed neuronal cell death due to 0.01 mM iodoacetate even after a recovery period of 48 h. After induction of histotoxic hypoxia by 0.1 mM iodoacetate high concentrations of Cere again led to neuronal protection after the 3 and 6 h recovery period. Moreover the influence of Cere on the cytoskeletal protein MAP2 in neurons submitted to 0.01 mM iodoacetate was investigated. With Western blotting and immuno-histochemical techniques it has been demonstrated that the drug clearly increased MAP2 abundance after histotoxic hypoxia. The present study points out that after severe damage of cortical neurons with iodoacetate Cere is able to protect neurons from delayed neuronal cell death maybe by maintaining neuronal plasticity due to avoidance of the cytoskeletal breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baird A (1987) Distribution of fibroblast growth factors (FGF’s) in tissue and structure-function studies with synthetic fragments of basic FGF. J Cell Physiol 5: 101–106

    Article  Google Scholar 

  • Bartus RT, Dean RL, Cavanaugh K, Eveleth D, Carriero DL, Lynch G (1995) Time-related neuronal changes following middle cerebral artery occlusion: implications for therapeutic intervention and the role of calpain. J Cereb Blood Flow Metab 15: 969–979

    Article  PubMed  CAS  Google Scholar 

  • Bickler PE, Buck LT, Hansen BM (1994) Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slice. Anesthesiology 81(6): 1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Boniece RI, Wagner JA (1993) Growth factors protect PC 12 cells against ischemia by a mechanism that is independent of PKA, PKC, and protein synthesis. J Neurosci 13(10): 4220–4228

    PubMed  CAS  Google Scholar 

  • Caceres A, Mautino J, Kosik KS (1992) Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9: 607–618

    Article  PubMed  CAS  Google Scholar 

  • Cuevas P, Carceller F, Gimenez-Gallego G (1994) Fibroblast growth factor and cerebral ischaemia. Neurol Res 16: 181–183

    PubMed  CAS  Google Scholar 

  • Djuricic B, Berger R, Paschen W (1994) Protein synthesis and energy metabolism in hippocampal slices during extended (24 hours) recovery following different periods of ischemia. Metab Brain Dis 9: 377–389

    Article  PubMed  CAS  Google Scholar 

  • Dux E, Oschlies U, Wiessner C, Hossmann K-A (1992) Glutamate-induced ribosomal disaggregation and ultrastructural changes in rat cortical neuronal culture: protective effect of horse serum. Neurosci Lett 141: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Dux E, Oschlies U, Uto A, Kusumoto M, Hossmann K-A (1996) Early ultrastructural changes after brief histotoxic hypoxia in cultured cortical and hippocampal CA1 neurons. Acta Neuropathol 92: 541–544

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Ceconi C, Curello S, Cargnoni A, Alfieri O, Pardini A, Marzollo P, Visioli O (1991) Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am J Med 91: 95S–105S

    Article  PubMed  CAS  Google Scholar 

  • Ferreira IL, Duarte Cerebrolysin B, Carvalho AP (1997) Chemical ischemia in cultured retina cells: role of excitatory amino acid receptors and of energy levels on cell death. Brain Res 768: 157–166

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Tuszynski MH, Chen KS, Fagan AM, Higgins GA (1991) Nerve growth factor function in the central nervous system. Curr Top Microbiol Immunol 165: 71–93

    Article  PubMed  CAS  Google Scholar 

  • Gschanes A, Valouskova V, Windisch M (1997) Ameliorative influence of a nootropic drug on motor activity of rats after bilateral carotid artery occlusion. J Neural Transm 104: 1319–1327

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DM, Sheldon RA, Jaffe W, Cheng Y, Ferriero DM (1996) Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 39: 114–122

    Article  PubMed  CAS  Google Scholar 

  • Hossmann K-A (1994) Glutamate-mediated injury in focal cerebral ischemia: the excitotoxin hypothesis revised. Brain Pathol 4: 23–36

    Article  PubMed  CAS  Google Scholar 

  • Hutter B, Grygar E, Windisch M (1996) Death of cultured telencephalon neurons induced by glutamate is reduced by the peptide derivative Cerebrolysin. J Neural Transm 47: 267–273

    Article  Google Scholar 

  • Kitagawa K, Matsumoto M, Ninobe M, Mikoshiba K, Hata R, Ueda H, Handa N, Fukunaga R, Isaka Y, Kimura K, Kamada T (1989) Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage — immunohistochemical investigation of dendritic damage. Neurosciences 31: 401–411

    Article  CAS  Google Scholar 

  • Koroleva VI, Korolev OS, Loseva E, Bures J (1998) The effect of MK-801 and of brain derived polypeptides on the development of focal brain ischemia induced by photothrombotic occlusion of the distal middle cerebral artery in rats. Brain Res (in press)

    Google Scholar 

  • Kusumoto M, Dux E, Hossmann KA (1997) Effect of trophic factors on delayed neuronal death induced by in vitro ischemia in cultivated hippocampal and cortical neurons. Metab Brain Dis 12: 113–120

    PubMed  CAS  Google Scholar 

  • Lewis SA, Ivanov IE, Lee GH, Cowan NJ (1989) Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated proteins MAP2 and tau. Nature 342: 498–505

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MR, Wiegand JST, Altar A, Distefano PS (1994) Neurotrophic factors: from molecule to man. TINS 17/5: 182–190

    Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acid as a final common pathway for neurologic disorders. N Engl J Med 330: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Maiese K, Boniece I, Demeo D, Wagner AJ (1993) Peptide growth factors protect against ischemia in culture by preventing nitric oxide toxicity. J Neurosci 13/7: 3034–3040

    Google Scholar 

  • Maiese K, Wagner AJ, Boccone L (1994) Nitric oxide: a downstream mediator of calcium toxicity in the ischemic cascade. Neurosci Lett 166: 43–47

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Ferrante RJ, Jenkins BG, Browne SE, Goetz K, Berger S, Chen IY, Beal MF (1997) Iodoacetate produces striatal excitotoxic lesions. J Neurochem 69(1): 285–289

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Kater SB (1989) Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroachitecture. Brain Res 478: 337–348

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng B (1993) Growth factors protect neurons against excitotoxic/ischemic damage by stabilizing calcium homeostasis. Stroke 24: 136–140

    Google Scholar 

  • McCay PB, King MM (1980) Vitamin E: its role as a biologic free radical scavenger and its relationship to the microsomal mixed-function oxidase system. In: Machlin LJ (ed) Vitamin E. A comprehensive treatise. Marcel Dekker, New York, pp 289–317

    Google Scholar 

  • Meldrum BS (1990) Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc Brain Metab Rev 2: 27–57

    PubMed  CAS  Google Scholar 

  • Mies G, Paschen W, Hossmann K-A (1990) Cerebral blood flow, glucose utilization, regional glucose and ATP content during the maturation period of delayed ischemic injury in gerbil brain. J Cereb Blood Flow Metab 10: 638–645

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Atwell D (1994) The release and uptake of excitators amino acids. Trends Pharmacol Sci 11: 462–468

    Article  Google Scholar 

  • Nozaki K, Finklestein SP, Beal MF (1993) Basic fibroblast growth factor protects against hypoxia-ischemia and NMDA neurotoxicity in neonatal rats. J Cereb Blood Flow Metab 13: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1993) Role of excitotoxins in developmental neuropathology. APMIS 40/101: 103–112

    Google Scholar 

  • Otto D, Unsicker K (1990) Basic FGF reverse chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J Neurosci 10: 1912–1920

    PubMed  CAS  Google Scholar 

  • Pettmann B, Louis JC, Sensenbrenner M (1979) Morphological and biochemical maturation of neurones cultured in the absence of glial cells. Nature 281: 378–380

    Article  PubMed  CAS  Google Scholar 

  • Piswanger A, Paier B, Windisch M (1990) Modulation of protein synthesis in a cell-free system from rat brain by Cerebrolysin during development and aging. Amino Acids 3: 651–657

    Article  Google Scholar 

  • Pulsinelli AW, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498

    Article  PubMed  CAS  Google Scholar 

  • Ray P, Monroe FL, Berman JD, Fiedler J (1991) Cyanide sensitive and insensitive bioenergetics in a clonal neuroblastoma X glioma hybrid cell line. Neurochem 16: 1121–1124

    Article  CAS  Google Scholar 

  • Reiner PB, Laycock AG, Doll CJ (1990) A pharmacological model of ischemia in the hippocampal slice. Neurosci Lett 119(2): 175–178

    Article  PubMed  CAS  Google Scholar 

  • Schwab M, Schaller R, Bauer R, Zwiener U (1997) Morphological effects of moderate forebrain ischemia combined with short-term hypoxia in rats — protective effects of Cerebrolysin. Exp Toxicol Pathol 49: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Schwab M, Bauer R, Zwiener U (1997b) Physiological effects and brain protection by hypothermia and Cerebrolysin after moderate forebrain ischemia in rats. Exp Toxicol Pathol 49: 105–116

    Article  PubMed  CAS  Google Scholar 

  • Shoeman RL, Traub P (1990) Calpains and the cytoskeleton. In: Mellgren RL, Murachi T (eds) Intracellular calcium-dependent proteolysis. Raven Press, New York, pp 191–209

    Google Scholar 

  • Siman R, Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1: 279–287

    Article  PubMed  CAS  Google Scholar 

  • Sugita Y, Kondo T, Kanazawa A, Itou T, Mizuno Y (1993) Protective effect of FPF 1070 (cerebrolysin) on delayed neuronal death in the gerbil — detection of hyroxyl radicals with salicylic acid. No To Shinkei 45: 325–331

    PubMed  CAS  Google Scholar 

  • Uto A, Dux E, Kusumoto M, Hossmann K-A (1995) Delayed neuronal death after brief histotoxic hypoxia in vitro. J Neurochem 64: 2185–2192

    Article  PubMed  CAS  Google Scholar 

  • Verity MA (1991) Use and abuse of tissue culture in neurotoxicity studies. Neurotoxicology 12: 457–459

    PubMed  CAS  Google Scholar 

  • White BC, Krause GS, O’Neil BJ, Degrada DJ, Tiffany BR, Grossman LI, Grunberger G (1993) Potential role of growth factors in global brain ischemia and reperfusion. The role of insulin-like growth factors in the nervous system. Brain Res 692: 281–283

    CAS  Google Scholar 

  • Windisch M, Piswanger A (1985) Beeinflussung des oxidativen Stoffwechsels von Hirn-, Leber-und Herzmuskelhomogenaten durch Peptidderivate und Kälberblutdialysat in vitro. Arzneimittelforschung/Drug Res 35: 87–89

    CAS  Google Scholar 

  • Windisch M, Paier B, Eggenreich U (1994) Neuronal growth factors and their role in degenerative brain diseases: a mini-review. Neurol Croat 43/2: 9–20

    Google Scholar 

  • Zeevalk GD, Nicklas WJ (1997) Contribution of glial metabolism to neuronal damage caused by partial inhibition of energy metabolism in retina. Exp Eye Res 65(3): 397–405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Hutter-Paier, B., Steiner, E., Windisch, M. (1998). Cerebrolysin® protects isolated cortical neurons from neurodegeneration after brief histotoxic hypoxia. In: Jellinger, K., Fazekas, F., Windisch, M. (eds) Ageing and Dementia. Journal of Neural Transmission. Supplementa, vol 53. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6467-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6467-9_31

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83114-4

  • Online ISBN: 978-3-7091-6467-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics