Skip to main content
Log in

Cyanide sensitive and insensitive bioenergetics in a clonal neuroblastoma x glioma hybrid cell line

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The primary mechanism of cyanide (CN) intoxication is the inhibition of metabolism in the central nervous system. We determined the effects of CN on several biochemical processes in neuroblastoma x glioma hybrid NG108-15 cells, which possess numerous neuronal properties. These cells were not sensitive to a high concentration (1 mM) of NaCN, but became sensitive in the presence of the anaerobic glycolysis inhibitors sodium iodoacetate (IA) and 2-deoxyglucose (2-DG): cellular metabolic processes (e.g., DNA, RNA and protein synthesis) decreased, to about 40% of control due to treatment with 0.5 mM NaCN+0.05 mM IA and 0.1 mM NaCN+20 mM 2-DG. ATP in cells exposed to 0.01 or 0.1 mM NaCN+20 mM 2-DG was reduced 75% and 100%, respectively within one min. Pretreatment of cells with the CN antidote cobalt (II) chloride (CoCl2) (0.06–0.18 mM) for 5 min prevented the depression of both [3H]leucine incorporation and ATP synthesis due to 1 mM NaCN+20 mM 2-DG in a concentration-dependent manner. A proposed CN antidote alpha-ketoglutaric acid (disodium salt) also prevented the depression of cellular metabolism due to NaCN plus 2-DG. These results indicate that blocking anaerobic glycolysis makes NG108-15 cells sensitive to a low concentration of CN. Thus NG108-15 cells should be useful to study the mechanisms of neurotoxicity of CN and to test antidotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lumsden, C. E. 1970. Pathogenic mechanisms in the Leucoencephalopathies in anoxic-ischemic processesin disorders of the blood and in intoxications, Pages 572–663, in Vinken, P. J., and Bruyn G. W., (eds.),Handbook of Clinical Neurology, Vol. 9 North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  2. Way, J. L. 1984. Cyanide intoxication and its mechanism of antagonism. Ann. Rev. Pharmacol. Toxicol. 24:451–481.

    Google Scholar 

  3. Ballantyne, B. and Marrs, T. C. 1987. Post-mortem features and criteria for the diagnosis of acute lethal cyanide poisoning. Pages 217–247,in B. Ballantyne and T. C. Marrs, (ed.), Clinical and Experimental Toxicology of Cyanides Wright, Bristol.

    Google Scholar 

  4. Keilin, D. 1930. Cytochrome and intracellular oxidase. Proc. R. Soc. (London) 106:418–444.

    Google Scholar 

  5. Warburg, O. 1931. Uber nicht-hemmung der zellat-mung durch blausaure. Biochem. z. 231:493–497.

    Google Scholar 

  6. Isom, G. E. and Way, J. L. 1984. Effects of oxygen on the antagonism of cyanide intoxication: cytochrome oxidase, In Vitro. Toxicol. and Appl. Pharmacol. 74:57–62.

    Google Scholar 

  7. Egekeze, J. O., and Oehme, F. W. 1980. Cyanides and their toxicity: A literature review. Vet. Quart. 2:104–114.

    Google Scholar 

  8. Ballantyne, B. 1983. Artifacts in the definition of toxicity by cyanides and cyanogens. Fundam. Appl. Toxicol. 3:400–408.

    PubMed  Google Scholar 

  9. Ballantyne, B. 1987. Toxicology of cyanide. Pages 41–126,in B. Ballantyne and T. C. Marrs, (eds.), Clinical and Experimental Toxicology of cyanides Wright, Bristol.

    Google Scholar 

  10. Baskin, S. I., Wilkerson, K. A., and Blitstein, 1987. Cardiac effects of cyanide Pages 138–155in B. Ballantyne and T. C. Marrs, (eds.), Clinical and Experimental toxicology of cyanides. Wright, Bristol.

    Google Scholar 

  11. Dean, R. T. 1987. Some critical membrane eyents during mammalian cell death,in C. S. Potten, (ed.), Perspective of Mammalian cell death, Oxford University Press, New York.

    Google Scholar 

  12. Kurzinger, K., Stadtkus, C., and Hamprecht, B. 1980. Uptake and energy-dependent extrusion of calcium in neural cells in culture. Eur. J. Biochem. 103:597–611.

    PubMed  Google Scholar 

  13. Wakade, A. R. and Wakade, T. D. 1985. Sympathetic neurones grown in culture generate ATP by glycolysis: Correlation between ATP content and [3H]norepinephrine uptake and storage. Brain Res. 359:397–401.

    PubMed  Google Scholar 

  14. Hamprecht, B. 1977. Structural, electrophysiological, biochemical, and pharmacological properties of neuroblastoma-glioma cell hybrids in cell culture. Pages 99–170in Bourne, G. H., Danielli, J. F., and Leon, K. W., (eds.), Int. Rev. of Cyt.b Vol 49. Academic Press, New York.

    Google Scholar 

  15. Nathanson, N. M., Klein, W. L., and Nirenberg, M. 1978. Regulation of adenylate cyclase activity mediated by muscarinic acetylcholine receptors. Proc. Acad. Sci. USA. 75:1788–1791.

    Google Scholar 

  16. Rojas, E. R., Santos, R. M., Stutzin, A., and Pollard, H. B. 1986 Pages 163–178,in Latorere, R., (ed), Ionic Channels in Cell and Model Systems, Plenum Publishing Corp., New York.

    Google Scholar 

  17. Isom, G. E., and Way, J. L. 1973. Cyanide intoxication: Protection with cobaltous chloride. Toxicol. and Appl. Pharmacol. 24:449–456.

    Google Scholar 

  18. Gee, S. J., LeValley, S. E. and Tyson, C. A. 1987. Application of a Hepatocyte-Erythrocyte coincubation System to Studies of Cyanide Antidotal mechanisms. Toxicol. and Appl. Pharmacol. 88:24–34.

    Google Scholar 

  19. Norris, J. C., and Hume, A. S. 1986. Structure activity relationship of Keto acids in antagonizing cyanide-induced lethality. Fed. Proc. 45:916 [Abstract].

    Google Scholar 

  20. Yamamoto, H. A. 1989. Hyperammonemia, increased brain neutral and aromatic amino acid levels, and encephalopathy induced by cyanide in mice. Toxicol. and Appl. Pharmacol. 99:415–420.

    Google Scholar 

  21. Maduh, E. U., Johnson, B. K., Borowitz, J. L., and Isom, G. E. 1988. Cyanide-induced Neurotoxicity: Mechanisms of Attenuation by chloropromazine. Toxicol. and Appl. Pharmacol. 96:60–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, P., Monroe, F.L., Berman, J.D. et al. Cyanide sensitive and insensitive bioenergetics in a clonal neuroblastoma x glioma hybrid cell line. Neurochem Res 16, 1121–1124 (1991). https://doi.org/10.1007/BF00966589

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966589

Key Words

Navigation