Skip to main content

Perspectives in clinical Alzheimer’s disease research and the development of antidementia drugs

  • Conference paper
Ageing and Dementia

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 53))

Summary

Current treatment approaches in Alzheimer’s disease are primarily symptomatic, with the major therapeutic strategy based on acetylcho-linesterase inhibition. Alzheimer’s disease research should advance over ensuing decade(s) to yield better symptomatic therapies, drugs designed to slow the rate of progression, and disease preventing agents. The next generation of cholinergic agents will include long acting cholinesterase inhibitors with a good safety profile and brain specific muscarinic agonists. The most critical advances in Alzheimer’s disease treatment, however, will target slowing of disease progression and prevention of dementia. Therapeutic agents are being developed that interfere with the synthesis, deposition and aggregation of β-amyloid protein. Clinical trials are presently being conducted with small molecules having nerve growth factor like activity (e.g. AIT-082, cerebrolysin). In addition, estrogen, anti-inflammatory agents (e.g. cyclo-oxygenase inhibitors) and antioxidant approaches (e.g. vitamin E) are currently being proposed or utilized in disease prevention trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD, Jr, Klaidman LK, Odunze IN, et al (1991) Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol Chem Neuropathol 14: 213–226

    Article  CAS  Google Scholar 

  • Aisen PS (1997) Inflammation and Alzheimer’s disease: mechanisms and therapeutic strategies. Gerontology 43: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Aisen PS, Davis KL (1994) Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 151: 1105–1113

    PubMed  CAS  Google Scholar 

  • Akai F, Hiruma S, Sato T, et al (1992) Neurotrophic factor-like effect of FPF1070 on septal cholinergic neurons after transections of fimbria-fornix in the rat brain. Histol Histopathol 7: 213–221

    PubMed  CAS  Google Scholar 

  • Albrecht E, Hingel S, Crailsheim K, et al (1993) The effects of Cerebrolysin on survival and sprouting of neurons from cerebral hemispheres and from the brain stem of chick embryos in vitro. In: Nicolini M, Zatta PF, Coraine B (eds) Alzheimer’s disease and related disorders. Pergamon Press, Oxford, pp 341–342

    Google Scholar 

  • Anand R, Harnan R, Gharabawi G (1997) Therapeutic effects of Exelon in the treatment of patients with Alzheimer’s disease. Neurology 48: A377

    Google Scholar 

  • Andersen K, Launer LJ, Ott A, et al (1995) Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam Study. Neurology 45: 1441–1445

    Article  PubMed  CAS  Google Scholar 

  • Arneric SP, Sullivan JP, Decker MW, et al (1995) Potential treatment of Alzheimer disease using cholinergic channel activators (ChCAs) with cognitive enhancement, anxiolytic-like, and cytoprotective properties. Alzh Dis Assoc Disord 9 [Suppl 2]: 50–61

    Article  Google Scholar 

  • Balazs L, Leon M (1994) Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem Res 19: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Flicker C (1987) Cholinergic psychopharmacology: an integration of human and animal research on memory. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 219–232

    Google Scholar 

  • Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16: 125–131

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Davis J, Cole GM, et al (1992) Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem Biophys Res Commun 186: 944–950

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Davis JB, Lesley R, et al (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Widmann M, Trapp T, et al (1995) 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun 216: 473–482

    Article  PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Levey AI, et al (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54: 465–473

    Article  PubMed  CAS  Google Scholar 

  • Breitner JC, Gau BA, Welsh KA, et al (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Breitner JC, Welsh KA, Helms MJ, et al (1995) Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Brugge K, Katzman R, Hill LR, et al (1992) Serological alpha 1-antichymotrypsin in Down’s syndrome and Alzheimer’s disease. Ann Neurol 32: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Bruno V, Battaglia G, Copani A, et al (1994) Protective action of idebenone against excitotoxic degeneration in cultured cortical neurons. Neurosci Lett 178: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Terry AV, Jr, et al (1995) Improvement in performance of a delayed matching-to-sample task by monkeys following ABT-418: a novel cholinergic channel activator for memory enhancement. Psychopharmacology 120: 256–266

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Hensley K, Harris M, et al (1994) beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 200: 710–715

    Article  PubMed  CAS  Google Scholar 

  • Caldwell BM (1954) An evaluation of psychological effects of sex hormone administration in aged women. J Gerontol 9: 168–174

    Article  PubMed  CAS  Google Scholar 

  • Campbell JE, Sullivan JP, Arnold W, et al (1996) Pharmacokinetic and safety studies on ABT-089; an orally active cholinergic channel modulator. Soc Neurosci 22: 1264

    Google Scholar 

  • Chen L, Richardson JS, Caldwell JE, et al (1994) Regional brain activity of free radical defense enzymes in autopsy samples from patients with Alzheimer’s disease and from nondemented controls. Int J Neurosci 75: 83–90

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Beard JL, et al (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Bruno V, Battaglia G, et al (1995) Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide. Mol Pharmacol 47: 890–897

    PubMed  CAS  Google Scholar 

  • Cummings J, Beiber F, Mas J, et al (1997) Metrifonate in Alzheimer’s disease: results of a dose-finding study. In: Iqbal K, Winblad B, Nishimura T, et al (eds) Alzheimer’s disease: biology, diagnosis and therapeutics. Wiley, Chichester, pp 665–669

    Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii: 1403

    Article  Google Scholar 

  • Davis RE, Doyle PD, Carroll RT, et al (1995) Cholinergic therapies for Alzheimer’s disease. Palliative or disease altering? Arzneimittelforschung 45: 425–431

    PubMed  CAS  Google Scholar 

  • Decker MW, Curzon P, Brioni JD, et al (1994) Effects of ABT-418, a novel cholinergic channel ligand, on place learning in septal-lesioned rats. Eur J Pharmacol 261: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Decker MW, Bannon AW, Curzon P, et al (1996) Effects of ABT-089, a novel cholinergic channel modulator, on cognitive performance in rats and monkeys. Soc Neurosci 22: 1263

    Google Scholar 

  • Donnelly-Roberts DL, Xue IC, Arneric SP, et al (1996) In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. Brain Res 719: 36–44

    Article  PubMed  CAS  Google Scholar 

  • Dorje F, Levey AI, Brann MR (1991) Immunological detection of muscarinic receptor subtype proteins (m1–m5) in rabbit peripheral tissues. Mol Pharmacol 40: 459–462

    PubMed  CAS  Google Scholar 

  • Fisher A, Heldman E, Gurwitz D, et al (1996) Ml agonists for the treatment of Alzheimer’s disease. Novel properties and clinical update. Ann NY Acad Sci 777: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Fuji K, Hiramatsu M, Kameyama T, et al (1993) Effects of repeated administration of propentofylline on memory impairment produced by basal forebrain lesion in rats. Eur J Pharmacol 236: 411–417

    Article  PubMed  CAS  Google Scholar 

  • Furuta A, Price DL, Pardo CA, et al (1995) Localization of Superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus. Am J Pathol 146: 357–367

    PubMed  CAS  Google Scholar 

  • Gage FH, Armstrong DM, Williams LR, et al (1988) Morphological response of axotomized septal neurons to nerve growth factor. J Comp Neurol 269: 147–155

    Article  PubMed  CAS  Google Scholar 

  • Glasky AJ, Kirat R, Middlemiss PJ, et al (1995) A novel purine derivative AIT-082 increases the synthesis of NGF, FGF-2 and NT-3 mRNA in astrocytes. Soc Neurosci Abstr 21: 295

    Google Scholar 

  • Glasky AJ, Melchior CL, Pirzadeh B, et al (1994) Effect of AIT-082, a purine analog, on working memory in normal and aged mice. Pharmacol Biochem Behav 47: 325–329

    Article  PubMed  CAS  Google Scholar 

  • Glasky AJ, Ritzmann RF, Rathbone MP, et al (1996) Neurotrophins, growth factors and mimetic agents as neuroprotectors in the treatment of Alzheimer’s disease. In: Becker R, Giacobini E (eds) Alzheimer disease: from molecular biology to therapy. Birkhäuser, Boston, pp 119–124

    Google Scholar 

  • Good PF, Perl DP, Bierer LM, et al (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31: 286–292

    Article  PubMed  CAS  Google Scholar 

  • Good PF, Werner P, Hsu A, et al (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 149: 21–28

    PubMed  CAS  Google Scholar 

  • Goodman Y, Mattson MP (1994) Staurosporine and K-252 compounds protect hippocampal neurons against amyloid beta-peptide toxicity and oxidative injury. Brain Res 650: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Fleming J, Tung YC, et al (1990) Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol 81: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Gupta-Bansal R, Frederickson RC, Brunden KR (1995) Proteoglycan-mediated inhibition of A beta proteolysis. A potential cause of senile plaque accumulation. J Biol Chem 270: 18666–18671

    Article  PubMed  CAS  Google Scholar 

  • Gurwitz D, Haring R, Pinkas-Kramarski R, et al (1995) NGF-dependent neurotrophic-like effects of AF102B, an Ml muscarinic agonist, in PC12M1 cells. Neuroreport 6: 485–488

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Hung AY, Schlossmacher MG, et al (1993) beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268: 3021–3024

    PubMed  CAS  Google Scholar 

  • Hall ED, Andrus PK, Smith SL, et al (1997) Pyrrolopyrimidines: novel brain-penetrating antioxidants with neuroprotective activity in brain injury and ischemia models. J Pharmacol Exp Ther 281: 895–904

    PubMed  CAS  Google Scholar 

  • Harris KA, Oyler GA, Doolittle GM, et al (1993) Okadaic acid induces hyperphosphorylated forms of tau protein in human brain slices. Ann Neurol 33: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, Carney JM, Mattson MP, et al (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91: 3270–3274

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, Aksenova M, Carney JM, et al (1995) Amyloid beta-peptide spin trapping. I: Peptide enzyme toxicity is related to free radical spin trap reactivity. Neuroreport 6: 489–492

    Article  PubMed  CAS  Google Scholar 

  • Higaki J, Quon D, Zhong Z, et al (1995) Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14: 651–659

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Mufson EJ (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp Neurol 106: 222–236

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, Hayako H, Kato K, et al (1996) Idebenone protects against oxidative stress mediated neuronal cell death by coupling with the mitochondrial electron transport system. Soc Neurosci 22: 200

    Google Scholar 

  • Honjo H, Ogino Y, Naitoh K, et al (1989) In vivo effects by estrone sulfate on the central nervous system-senile dementia (Alzheimer’s type). J Steroid Biochem 34: 521–525

    Article  PubMed  CAS  Google Scholar 

  • Jackson CV, Holland AJ, Williams CA, et al (1988) Vitamin E and Alzheimer’s disease in subjects with Down’s syndrome. J Ment Defic Res 32: 479–484

    PubMed  Google Scholar 

  • Jeandel C, Nicolas MB, Dubois F, et al (1989) Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 35: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson ML, Bliss MR, Brain AT, et al (1989) Rheumatoid arthritis and senile dementia of the Alzheimer’s type [letter]. Br J Rheumatol 28: 86–88

    Article  PubMed  CAS  Google Scholar 

  • Jones GM, Sahakian BJ, Levy R, et al (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108: 485–494

    Article  PubMed  CAS  Google Scholar 

  • Jonhagen M, Wahlund LO, Amberla K, et al (1996) Nerve growth factors as a treatment of Alzheimer’s disease. Neurobiol Aging 17

    Google Scholar 

  • Kantor HI, Michael CM, Shore H (1973) Estrogen for older women. Am J Obstet Gynecol 116: 115–118

    PubMed  CAS  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, et al (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 42: 159–163

    Article  PubMed  CAS  Google Scholar 

  • Kisilevsky R, Lemieux LJ, Fraser PE, et al (1995) Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med 1: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Knapp MJ, Knopman DS, Solomon PR, et al (1994) A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. JAMA 271: 985–991

    CAS  Google Scholar 

  • Knopman D, Schneider L, Davis K, et al (1996) Long-term tacrine (Cognex) treatment: effects on nursing home placement and mortality, Tacrine Study Group. Neurology 47: 166–177

    Article  PubMed  CAS  Google Scholar 

  • Knops J, Suomensaari S, Lee M, et al (1995) Cell-type and amyloid precursor protein-type specific inhibition of A beta release by bafilomycin Al, a selective inhibitor of vacuolar ATPases. J Biol Chem 270: 2419–2422

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS (1990) Tau protein and Alzheimer’s disease. Curr Opin Cell Biol 2: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Orgogozo J (1997) Efficacy and safety of SB 202026 as a symptomatic treatment for Alzheimer’s disease. In: Iqbal K, Winblad B, Nishimura T, et al (eds) Alzheimer’s disease: biology, diagnosis and therapeutics. Wiley, Chichester, pp 677–685

    Google Scholar 

  • Lakis J, Glasco S, Miller SW, et al (1995) Production of reactive oxygen species correlates with decreased cytochrome oxidase activity in Alzheimer’s disease cybrids. Soc Neurosci Abstr 21: 979

    Google Scholar 

  • Lazarovici P, Rasouly D, Friedman L, et al (1996) K252a and staurosporine microbial alkaloid toxins as prototype of neurotropic drugs. Adv Exp Med Biol 391: 367–377

    Article  PubMed  CAS  Google Scholar 

  • Ledesma MD, Bonay P, Colaco C, et al (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269: 21614–21679

    PubMed  CAS  Google Scholar 

  • Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13: 131–144

    Article  PubMed  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF, et al (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11: 3218–3226

    PubMed  CAS  Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91: 12243–12247

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Yee A, Brewer HB, Jr, et al (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372: 92–94

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Brewer HB, Jr, Potter H (1996) Alzheimer A beta neurotoxicity: promotion by antichymotrypsin, ApoE4; inhibition by A beta-related peptides. Neurobiol Aging 17: 773–780

    Article  PubMed  CAS  Google Scholar 

  • Masferrer JL, Zweifel BS, Manning PT, et al (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinfiammatory and nonulcerogenic. Proc Natl Acad Sci USA 91: 3228–3232

    Article  PubMed  CAS  Google Scholar 

  • Matsubara E, Hirai S, Amari M, et al (1990) Alpha 1-antichymotrypsin as a possible biochemical marker for Alzheimer-type dementia. Ann Neurol 28: 561–567

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Alves SE, Bulloch K, et al (1997) Ovarian steroids and the brain: implications for cognition and aging. Neurology 48: S 8–15

    Article  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21: 195–218

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer E, Rogers J, et al (1990) Anti-inflammatory drugs and Alzheimer disease [letter]. Lancet 335: 1037

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36: 747–751

    Article  PubMed  CAS  Google Scholar 

  • Seibert K, Zhang Y, Leahy K, et al (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 91: 12013–12017

    Article  PubMed  CAS  Google Scholar 

  • Simmons LK, May PC, Tomaselli KJ, et al (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45: 373–379

    PubMed  CAS  Google Scholar 

  • Smith MA, Kutty RK, Richey PL, et al (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145: 42–47

    PubMed  CAS  Google Scholar 

  • Smith MA, Rudnicka-Nawrot M, Richey PL, et al (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 64: 2660–2666

    Article  PubMed  CAS  Google Scholar 

  • Sramek JJ, Anand R, Wardle TS, et al (1996) Safety/tolerability trial of SDZ ENA 713 in patients with probable Alzheimer’s disease. Life Sci 58: 1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Stewart WF, Kawas C, Corrada M, et al (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48: 626–632

    Article  PubMed  CAS  Google Scholar 

  • Strada O, Hirsch EC, Javoy-Agid F, et al (1992) Does loss of nerve growth factor receptors precede loss of cholinergic neurons in Alzheimer’s disease? An autoradio-graphic study in the human striatum and basal forebrain. J Neurosci 12: 4766–4774

    PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90: 1977–1981

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JP, Anderson DJ, Briggs CA, et al (1996) ABT-089: A potent and selective cholinergic channel modulator with neuroprotective properties. Soc Neurosci Abstr 22: 1263

    Google Scholar 

  • Tang MX, Jacobs D, Stern Y, et al (1996) Effect of estrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348: 429–432

    Article  PubMed  CAS  Google Scholar 

  • Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci USA 92: 4299–4303

    Article  PubMed  CAS  Google Scholar 

  • Thal LJ, Fuld PA, Masur DM, et al (1983) Oral physostigmine and lecithin improve memory in Alzheimer disease. Ann Neurol 13: 491–496

    Article  PubMed  CAS  Google Scholar 

  • Thal LJ, Schwartz G, Sano M, et al (1996) A multicenter double-blind study of controlled-release physostigmine for the treatment of symptoms secondary to Alzheimer’s disease. Physostigmine Study Group. Neurology 47: 1389–1395

    CAS  Google Scholar 

  • Thomas T, Thomas G, McLendon C, et al (1996) beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380: 168–171

    Article  PubMed  CAS  Google Scholar 

  • Tocco G, Freire-Moar J, Schreiber SS, et al (1997) Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease. Exp Neurol 144: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama T, Shoji A, Kataoka K, et al (1996) Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J Biol Chem 271: 6839–6844

    Article  PubMed  CAS  Google Scholar 

  • Troetel WM, Imbimbo BP (1997) Overview of the development of epatstigmine, a long-acting cholinesterase inhibitor. In: Iqbal K, Winblad B, Nishimura T, et al (eds) Alzheimer’s disease: biology, diagnosis and therapeutics. Wiley, Chichester, pp 671–676

    Google Scholar 

  • Tojanowski JQ, Lee VM (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. FASEB J 9: 1570–1576

    Google Scholar 

  • Vane J (1994) Towards a better aspirin [news; comment]. Nature 367: 215–216

    Article  PubMed  CAS  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, et al (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91: 4766–4770

    Article  PubMed  CAS  Google Scholar 

  • Webster S, Glabe C, Rogers J (1995) Multivalent binding of complement protein C1Q to the amyloid beta-peptide (A beta) promotes the nucleation phase of A beta aggregation. Biochem Biophys Res Commun 217: 869–875

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, et al (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122–126

    Article  PubMed  CAS  Google Scholar 

  • Wieland E, Schutz E, Armstrong VW, et al (1995) Idebenone protects hepatic microsomes against oxygen radical-mediated damage in organ preservation solutions. Transplantation 60: 444–451

    Article  PubMed  CAS  Google Scholar 

  • Wilcock G, Wilkinson D (1997) Galanthamine hydrobromide: interim results of a group comparative, placebo-controlled study of efficacy and safety in patients with a diagnosis of senile dementia of the Alzheimer type. In: Iqbal K, Winblad B, Nishimura T, et al (eds) Alzheimer’s disease: biology, diagnosis and therapeutics. Wiley, Chichester, pp 661–664

    Google Scholar 

  • Winkler J, Ramirez GA, Kuhn HG, et al (1997) Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann Neurol 41: 82–93

    Article  PubMed  CAS  Google Scholar 

  • Xu SS, Gao ZX, Weng Z, et al (1995) Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Chung Kuo Yao Li Hsueh Pao 16: 391–395

    PubMed  CAS  Google Scholar 

  • Yamagata K, Andreasson KI, Kaufmann WE, et al (1993) Expression of a mitogeninducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11: 371–386

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Chen X, Schmidt AM, et al (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 91: 7787–7791

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Grundman, M., Corey-Bloom, J., Thal, L.J. (1998). Perspectives in clinical Alzheimer’s disease research and the development of antidementia drugs. In: Jellinger, K., Fazekas, F., Windisch, M. (eds) Ageing and Dementia. Journal of Neural Transmission. Supplementa, vol 53. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6467-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6467-9_23

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83114-4

  • Online ISBN: 978-3-7091-6467-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics