Skip to main content
Log in

Evidence of an oxidative challenge in the Alzheimer's brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer's disease may arise from or produce oxidative damage in the brain. To assess the responses of the Alzheimer's brain to possible oxidative challenges, we assayed for glutathione, glucose-6-phosphate dehydrogenase, catalase and superoxide dismutase in twelve regions of Alzheimer's disease and aged control brains. In addition, we determined levels of malondialdehyde to evaluate lipid peroxidation in these brain regions. Most brain regions showed evidence of a response to an oxidative challenge, but the cellular response to this challenge differed among brain regions. These data suggest that the entire Alzheimer's brain may be subject to an oxidative challenge, but that some brain areas may be more vulnerable than others to the consequent neural damage that characterizes the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volcier, L., and Crino, P. B. 1990. Involvement of free radicals in dementia of the Alzheimer's type: a hypothesis. Neurobiol. Aging 11:567–571.

    PubMed  Google Scholar 

  2. Freeman, B. A., and J. D. Crapo. 1982. Biology of disease: Free radicals and tissue injury. Lab. Invest. 47:412–426.

    PubMed  Google Scholar 

  3. Haliwell, B., and Gutteridge, J. M. C. 1989. Free Radicals in Biology and Medicine. 2nd ed., Oxford, Clarendon Press.

    Google Scholar 

  4. Nohl, H., and Hegner, D. 1978. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563–567.

    PubMed  Google Scholar 

  5. Davies, K. J. A. 1987. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262:9895–9901.

    PubMed  Google Scholar 

  6. Lin, W. S., Wong, F., and Anderson, R. 1987. Role of superoxide in radiation-killing of Escherichia coli and in thymine release from thymidine. Biochem. Biophys. Res. Comm. 147:778–786.

    PubMed  Google Scholar 

  7. Melho-Filho, A. C., and Menighini, R. 1984. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Hager-Weiss reaction. Biochim. Biophys. Acta. 781:56–63.

    PubMed  Google Scholar 

  8. Harman, D., Eddy, E. E., and Noffsinger, J. 1976. Free radical theory of aging: Inhibition of amyloidosis in mice after antioxidants; possible mechanism. Amer. Geriatrics Soc. 24:203–210.

    Google Scholar 

  9. Blass, J. P., Baker, A. C., Ko, L. W., and Black, R. S. 1990. Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation. Arch. Neurol. 47:864–869.

    PubMed  Google Scholar 

  10. Ceballos, I., Javoy-Agid, F., Hirsch, E. C., Dumas, S., Kamoun, P. P., Sinet, P. M., and Agid, Y. 1989. Localization of copperzinc superoxide dismutase mRNA in human hippocampus by in situ hybridization. Neurosci. Lett. 105:41–46.

    PubMed  Google Scholar 

  11. Marklund, S. L., Aldolfsson, R., Gottfries, C. G., and Winbald, B. 1985. Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J. Neurol. Sci. 67:319–325.

    PubMed  Google Scholar 

  12. Pappolla, M. A., Omar, R. A., Kim, K. S., and Robakis, N. K. 1992. Immunohistochemical evidence of antioxidant stress in Alzheimer's Disease. Am. J. Pathol. 140:621–628.

    PubMed  Google Scholar 

  13. Delacourte, A., Defossez, A., Ceballos, I., Nicole, A., and Sinet, P. M. 1988. Preferential localization of copper/zinc superoxide dismutase in the vulnerable cortical neurons in Alzheimer's disease. Neurosci. Lett. 92:247–253.

    PubMed  Google Scholar 

  14. Chia, L. S., Thompson, J. E., and Moscarello, M. A. 1984. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease. Can Biochem. Biophys. Acta Ser. Biomembr. 775:308–312.

    Google Scholar 

  15. Subarao, K. V., Richardson, S., and Ang, L. C. 1990. Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J. Neurochem. 55:342–345.

    PubMed  Google Scholar 

  16. Hajimohammadreza, I., and Brammer, M. 1990. Brain membrane fludity and lipid peroxidation in Alzheimer's disease. Neurosci. Lett. 112:333–337.

    PubMed  Google Scholar 

  17. Meister, A., and Anderson, M. E. 1983. Glutathione. Ann. Rev. Biochem. 52:711–760.

    PubMed  Google Scholar 

  18. Perry, T. L., Yong, V. W., Bergeron, C., H. S., and Jones, K. 1987. Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer's disease. Ann. Neurol. 21:331–336.

    PubMed  Google Scholar 

  19. Adams, J. D., Jr., Klaidman, L. K., Odunze, I. N., Shen, H. C., and Miller, C. A. 1991. Alzheimer's and Parkinson's disease. Brain levels of glutathione, glutathione disulfide, and Vitamin E. Mol. Chem. Neuropathol. 14:213–226.

    PubMed  Google Scholar 

  20. Lehninger, A. L. 1975. Biochemistry. Worth: New York.

    Google Scholar 

  21. Kosower, N. S., and Kosower, E. M. 1978. The glutathione status of cells. Int. Rev. Cytol. 54:109–160.

    PubMed  Google Scholar 

  22. Martins, R. N., Harper, C. G., Stokes, G. B., and Masters, C. L. 1986. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer's disease may reflect oxidative stress. J. Neurochem. 46:1042–1045.

    PubMed  Google Scholar 

  23. Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., Vogel, F. S., Hughes, J. P., van Belle, G., and Berg, L. 1991. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 41:479–486.

    PubMed  Google Scholar 

  24. Chan, P. H., and Fishman, R. A. 1980. Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J. Neurochem. 35:1004–1007.

    PubMed  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265.

    PubMed  Google Scholar 

  26. Cohen, G., Dembiec, D., and Marcus, J. 1970. Measurement of catalase in tissue extracts. Analyt. Biochem. 34:30–38.

    PubMed  Google Scholar 

  27. Marklund, S. 1979. A simple specific method for the determination of the hemoglobin contents of tissue homogenates. Clin. Chim. Acta. 92:229–234.

    PubMed  Google Scholar 

  28. Catalano, E. W., Johnson, G. F., and Solomon, H. M. 1975. Measurement of erythrocyte glucose 6-phosphate dehydrogenase activity with a centrifugal analyzer. Clin. Chem. 21:134–138.

    PubMed  Google Scholar 

  29. Cho, S., and Joshi, J. G. 1988. Effect of long-term feeding of aluminum chloride on hexokinase and glucose 6-phosphate dehydrogenase in the brain. Toxicology 48:61–69.

    PubMed  Google Scholar 

  30. Anderson, M. E. 1985. Determination of glutathione and glutathione disulfide in biological samples. Meth. Enzymol. 113:548–555.

    PubMed  Google Scholar 

  31. Tietze, F. 1969. Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27:502–522.

    PubMed  Google Scholar 

  32. Kostyuk, V. A., and Potapovich, A. L. 1989. Superoxide-driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem. Int. 19:1117–24.

    PubMed  Google Scholar 

  33. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and DeLong, M. R. 1982. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239.

    PubMed  Google Scholar 

  34. Perrins, R., Briancon, S., Jeandel, C., Artur, Y., Minn, A., Penin, F., and Siest, G. 1990. Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer's disease: a case-control study. Gerontology 36:306–313.

    PubMed  Google Scholar 

  35. Zemlen, F. P., Thienhaus, O. J., and Bosman, H. B. 1989. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res. 476:160–162.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balazs, L., Leon, M. Evidence of an oxidative challenge in the Alzheimer's brain. Neurochem Res 19, 1131–1137 (1994). https://doi.org/10.1007/BF00965146

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965146

Key Words

Navigation