Skip to main content

Post mortem studies in Parkinson’s disease — is it possible to detect brain areas for specific symptoms?

  • Conference paper
Diagnosis and Treatment of Parkinson’s Disease — State of the Art

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 56))

Summary

Parkinson’s disease (PD) is characterized by progressive neuronal loss associated with Lewy bodies in many subcortical nuclei leading to multiple biochemical and pathophysiological changes of clinical relevance. Loss of nigral neurons causing striatal dopamine deficiency is related to both the duration and clinical stages (severity) of the disease. The clinical subtypes of PD have different morphological lesion patterns: a) The akinetic-rigid type shows more severe cell loss in the ventrolateral part of substantia nigra zona compacta (SNZC) that projects to the dorsal putamen than the medial part projecting to caudate nucleus and anterior putamen, with negative correlation between SNZC cell counts, severity of akinesia-rigidity, and dopamine loss in the posterior putamen. Reduced dopaminergic input causes overactivity of the GABA ergic inhibitory striatal neurons projecting via the “indirect loop” to SN zona reticulata (SNZR) and medial pallidum (GPI) leading to inhibition of the glutamatergic thalamo-cortical motor loop and reduced cortical activation. b) The tremor-dominant type shows more severe neuron loss in medial than in lateral SNZC and damage to the retrorubral field A8 containing only few tyrosine hydroxylase and dopamine transporter immunoreactive (IR) neurons but mainly calretinin-IR cells. A8 that is rather preserved in rigid-akinetic PD (protective role of calcium-binding protein?) projects to the matrix of dorsolateral striatum and ventromedial thalamus. Together with area A10 it influences the striai efflux via SNZR to thalamus and from there to prefrontal cortex. Rest tremor in PD is associated with increased metabolism in the thalamus, subthalamus, pons, and premotor-cortical network suggesting an increased functional activity of thalamo-motor projections. In essential tremor, no significant pathomorphological changes but overactivity of cerebello-thalamic loop have been observed. c) In the akinetic-rigid forms of multisystem atrophy, degeneration is more severe in the lateral SNZC with severe loss of calbindin-IR cells reflecting initial degeneration of the striatal matrix in the caudal putamen with transsynaptic degeneration of striatonigral efferences that remain intact in PD. This fact and loss of striatal D2 receptors — as in advanced stages of PD — are reasons for negative response to L-dopa substitution. These data suggest different pathophysiological mechanisms of the clinical subtypes of PD that have important therapeutic implications. d) Involvement of extranigral structures in PD includes the mesocortical dopaminergic system, the noradrenergic locus coeruleus, dorsal vagal nucleus and medullary nuclei, serotonergic dorsal raphe, nucleus basalis of Meynert and other cholinergic brainstem nuclei, e.g. Westphal-Edinger nucleus (controlling pupillomotor function), posterolateral hypothalamus and the limbic system, e.g. amygdaloid nucleus, part of hippocampal formation, limbic thalamic nuclei with prefrontal projections, etc. Damage to multiple neuronal systems by the progressing degenerative process causing complex biochemical changes may explain the variable clinical picture of PD including vegetative, behavioural and cognitive dysfunctions, depression, pharmacotoxic psychoses, etc. Future comparative clinico-morphological and pathobiochemical studies will further elucidate the pathophysiological basis of specific clinical symptoms of PD and related disorders providing a broader basis for effective treatment strategies.

Parkinson’s disease (PD) is characterized by progressive degeneration of the nigrostriatal dopaminergic system and other subcortical neuronal systems leading to striatal dopamine deficiency and other biochemical deficits related to the variable clinical signs and symptoms of the disorder. While the pathogenesis and aetiology of PD are still unknown, the recent elucidation of the morphological and pathophysiological substrates of several clinical dysfunctions in PD has provided a better insight into the course of the disease and important implications for treatment (Jellinger, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CD, Fahn ST (eds) Movement disorders 2. Butterworth, London, pp 166–230

    Google Scholar 

  • Agid Y, Graybiel AM, Ruberg M et al (1990) The efficacy of levodopa treatment declines in the course of Parkinson’s disease. Do non-dopaminergic lesions play a role? Adv Neurol 53: 83–100

    PubMed  CAS  Google Scholar 

  • Albin RL (1995) The pathophysiology of chorea, ballism and parkinsonism. Parkinsonism Rel Disord 1: 2–133

    Article  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31

    PubMed  CAS  Google Scholar 

  • Antonini A, Moeller JR, Nakamura T, Spetsieris P, Dhawan V, Eidelberg D (1998) The metabolic anatomy of tremor in Parkinson’s disease. Neurology 51: 803–810

    Article  PubMed  CAS  Google Scholar 

  • Arima K, Ueda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka-Ueahra H, Kawai M (1998) NACP/α-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Baba M, Nakajo S, Tu PH, et al. (1998) Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152: 879–884

    PubMed  CAS  Google Scholar 

  • Bagmen T, Carmine B, De-Long MR (1994) Parkinsonian tremor is associated with low frequency oscillations in selective loops of the basal ganglia. Adv Behav Biol 41: 317–325

    Article  Google Scholar 

  • Banati RB, Daniel SE, Path MRC, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gao DM et al (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Bender MB (1980) Brain control of conjugate horizontal and vertical eye movements. Brain 103: 25–69

    Article  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O et al (1973) Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    Article  PubMed  CAS  Google Scholar 

  • Blandini F, Porter RHP, Greenamyre JT (1996) Glutamate and Parkinson’s disease. Mol Neurobiol 12: 73–94

    Article  PubMed  CAS  Google Scholar 

  • Boecker H, Wills AJ, Ceballos-Baumann A et al (1997) Stereotactic thalamotomy in tremor-dominant Parkinson’s disease — An (H2O)-O-15 PET motor activation study. Ann Neurol 41: 108–111

    Article  PubMed  CAS  Google Scholar 

  • Booij J, Tissingh G, Boer GJ et al (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 133–140

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D et al (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103: 455–490

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ (1993) Functional imaging in relation to parkinsonian syndromes. J Neurol Sci 115: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Bucher SF, Seelos KC, Dodel RC et al (1997) Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol 41: 32–40

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Antonelli M, Sulzer D (1998) Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem 71: 517–525

    Article  PubMed  CAS  Google Scholar 

  • Carmichael SW, Wilson RJ, Brimijoin WS et al (1988) Decreased catecholamines in the adrenal medulla of patients with parkinsonism. N Engl Med J 319: 254

    Google Scholar 

  • Chan-Palay V (1993) Depression and dementia in Parkinson’s disease: Catecholaminergic changes in the locus ceruleus. A basis for therapy. Adv Neurol 60: 438–446

    PubMed  CAS  Google Scholar 

  • Chang MH, Chang TW, Lai PH, Sy CG (1995) Resting tremor only — a variant of Parkinson’s disease or of essential tremor. J Neurol Sci 130: 215–219

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 51(2) [Suppl 2]: 30–35

    Article  Google Scholar 

  • Coles SK, Iies JF, Nicolopoulos-Stournaras S (1989) The mesencephalic centre controlling locomotion in the rat. Neuroscience 28: 149–157

    Article  PubMed  CAS  Google Scholar 

  • Counihan TJ, Penney JB, Jr (1998) Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s diseased brains. J Neurol Neurosurg Psychiatry 65: 164–169

    Article  PubMed  CAS  Google Scholar 

  • Dale GE, Probst A, Luthert P, et al (1992) Relationship between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol 83: 525–529

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Agid Y (1996) Patterns of cell loss in the substantia nigra in Parkinson’s disease. Neurology 46: A442

    Article  Google Scholar 

  • Deutch AY, Goldstein M, Baldino FJ, Roth RH (1988) Telencephalic projections of the A8 dopaminergic cell group. Ann NY Acad Sci 537: 27–50

    Article  PubMed  CAS  Google Scholar 

  • Dormont D, Cornu P, Pidoux B et al (1997) Chronic thalamic stimulation with three-dimensional MR stereotactic guidance. Am J Neuroradiol 18: 1093–1107

    PubMed  CAS  Google Scholar 

  • Dubois B, Malapani C, Verin M et al (1994) Cognitive functions and the basal ganglia. The model of Parkinson’s disease. Rev Neurol 150: 763–770

    CAS  Google Scholar 

  • Duyckaerts C, Gaspar P, Costa C et al (1993) Dementia in Parkinson’s disease. Morphometric data. Adv Neurol 60: 447–455

    CAS  Google Scholar 

  • Eadie MJ (1963) The pathology of certain medullary nuclei in parkinsonism. Brain 86: 781–795

    Article  PubMed  CAS  Google Scholar 

  • Elsworth J, Roth R (1996) Dopamine autoreceptor pharmacology and function: Recent insights. In: Neve K, Neve R (eds) The dopamine receptors. Humana Press, Totowa, NJ, pp 223–265

    Google Scholar 

  • Eve DJ, Nisbet AP, Kingsburg AE et al (1997) Selective increase in somatostatin mRNA expression in human basal ganglia in Parkinson’s disease. Mol Brain Res 50: 59–70

    Article  PubMed  CAS  Google Scholar 

  • Fearnley JM, Lees AJ (1994) Pathology of Parkinson’s disease. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 545–554

    Google Scholar 

  • Fernandez A, Deceballos ML, Rose S et al (1996) Alterations in peptide levels in Parkinson’s disease and incidental Lewy body disease. Brain 119: 823–830

    Article  PubMed  Google Scholar 

  • Fernandez PM, Dujovny M (1997) Pallidotomy — Editorial review. Neurol Res 19: 25–34

    PubMed  CAS  Google Scholar 

  • Furukawa Y, Kondo T, Nishi K et al (1991) Total biopterin levels in the ventricular CSF of patients with Parkinson’s disease: A comparison between akineto-rigid and tremor types. J Neurol Sci 103: 232–237

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, Geffen LB, Dehoroy L, et al (1993) Loss of Cl and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease. Ann Neurol 33: 357–367

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, Vickers JC, Blumbergs PC, Blessing WW (1994) Loss of nonphosphorylated neurofilament immunoreactivity, with preservation of tyrosine hydroxylase, in surviving substantia nigra neurons in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57: 1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, Blessing WW, Blumbergs PC (1995) Ubiquitin-positive degenerating neurites in the brainstem in Parkinson’s disease. Brain 118: 1447–1459

    Article  PubMed  Google Scholar 

  • Galvin JE, Lee AMY, Baba M, Mann DMA, Dickson DW, Yamaguchi H, Schmidt ML, Iwatsubo T, Trojanowski JQ (1997) Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann Neurol 42: 595–603

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol 64: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Duyckaerts C, Alvarez C et al (1991) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol 30: 365–374

    Article  PubMed  CAS  Google Scholar 

  • Gerfen C (1992) The neostriatal mosaic: Multiple levels of compartmental organization. Trends Neurosci 15: 133–139

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Jellinger K, Riederer P (1994) The possible role of noradrenergic deficits in selected signs of Parkinson’s disease. In: Briley M, Marien M (eds) Noradrenergic mechanisms in Parkinson’s disease. CRC Press, Boca Raton, pp 59–71

    Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms of neurodegene-ration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Adv Neurol 69: 177–194

    PubMed  CAS  Google Scholar 

  • German DC, Manaye KF, White CL (1992) Disease specific patterns of locus ceruleus cell loss. Ann Neurol 32: 667–676

    Article  PubMed  CAS  Google Scholar 

  • German DC, Manaye KE, Sonsalia PK, Brooks BA (1993) Midbrain dopaminergic neurons (nuclei A8, A9, and A10): Three-dimensional reconstruction in the rat. J Comp Neurol 331: 297–309

    Article  PubMed  CAS  Google Scholar 

  • Gilman S, Frey KA, Koeppe RA et al (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40: 885–892

    Article  PubMed  CAS  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1997) LAMMA studies of iron, oxidative stress, and neuroprotective strategies in Parkinson’s disease. In: Yasui M, Strong MJ, Ota K, Veritiy MA (eds) Mineral and metal neurotoxicology. CRC Press, Boca Raton, pp 379–390

    Google Scholar 

  • Goto S, Matsumoto S, Ushio Y, Hirano A (1996) Subregional loss of putaminal efferents to the basal ganglia output nuclei may cause parkinsonism in striatonigral degeneration. Neurology 47: 1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Hirsch EC, Agid Y (1990) The nigrostriatal system in Parkinson’s disease. Adv Neurol 53: 17–29

    PubMed  CAS  Google Scholar 

  • Groenewegen JH, Roeling T, Voorn P, Berendse H (1993) The parallel arrangement of basal ganglia-thalamocortical circuits: a neuronal substrate for the role of dopamine in motor and cognitive functions? In: Wolters EC, Scheltens P (eds) Mental dysfunction in Parkinson’s disease. Vrije Universiteit Amsterdam 193: 3–18

    Google Scholar 

  • Gross C, Rougier A, Guehl D et al (1997) High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease — a study of seven cases. J Neurosurg 87: 491–498

    Article  PubMed  CAS  Google Scholar 

  • Guiloff RJ, George RJ, Marsden DC (1980) Reversible supranuclear ophthalmoplegia associated with parkinsonism. J Neurol Neurosurg Psychiatry 43: 352–354

    Google Scholar 

  • Guttman M, Burkholder J, Kish SJ et al (1997) [C-ll]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease — implications for the symptomatic threshold. Neurology 48: 1578–1583

    Article  PubMed  CAS  Google Scholar 

  • Hallanger AE, Levey AL, Lee HJ et al (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262: 105–124

    Article  PubMed  CAS  Google Scholar 

  • Halliday CM, Blumbergs PC, Cotton RCH et al (1990a) Loss of brainstem serotonin-and substance P-containing neurons in Parkinson’s disease. Brain Res 510: 104–107

    Article  PubMed  CAS  Google Scholar 

  • Halliday CM, Blumbergs PC, Cotton RGH et al (1990b) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27: 373–385

    Article  PubMed  CAS  Google Scholar 

  • Halliday GM, McRitchie DA, Cartwright HR et al (1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 3: 52–60

    Article  PubMed  CAS  Google Scholar 

  • Hardman CD, McRitchie DA, Halliday GM et al (1996) The substantia nigra pars reticulata in Parkinson’s disease. Neurodegeneration 5: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Hardman CD, Halliday GM, McRitchie DA et al (1997a) Progressive supranuclear palsy effects both the substantia nigra pars compacta and reticulata. Exp Neurol 144: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Hardman CD, Halliday GM, McRitchie DA, Morris JGL (1997b) The subthalamic nucleus in Parkinson’s disease and progressive supranuclear palsy. J Neuropathol Exp Neurol 56: 132–142

    Article  PubMed  CAS  Google Scholar 

  • Heinonen O, Soininen H, Sorvari H et al (1995) Loss of synaptophysin-like immunoreactivity in the hippocampal formation as an early phenomenon in Alzheimer’s disease. Neuroscience 64: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Hierholzer J, Cordes M, Venz S et al (1998) Loss of dopamine-D2 receptor binding sites in parkinsonian plus syndromes. J Nucl Med 39: 954–960

    PubMed  CAS  Google Scholar 

  • Hill WD, Arai M, Cohen JA, et al (1993) Neurofilament mRNA is reduced in Parkinson’s disease substantia nigra pars compacta neurons. J Comp Neurol 328–336

    Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson’s disease and progressive supranuelear palsy. Proc Natl Acad Sci USA 84: 5976–5980

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Mouatt A, Thomasset M et al (1992) Expression of calbindin D (28K) — like immunoreactivity in catecholaminergic cell groups of the human midbrain; normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1: 83–93

    Google Scholar 

  • Hirsch EC, Faucheux B, Damier P et al (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm [Suppl] 50: 79–88

    Article  CAS  Google Scholar 

  • Holthoffdetto VA, Kessler J, Herholz K et al (1997) Functional effects of striatal dysfunction in Parkinson’s disease. Arch Neurol 54: 145–150

    Article  CAS  Google Scholar 

  • Hoogendijk WJG, Pall CW, Troost D et al (1995) Image analysis-assisted morphometry of the locus ceruleus in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Brain 118: 131–143

    Article  PubMed  Google Scholar 

  • Hunot S, Boissiere F, Faucheux B et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363

    Article  PubMed  CAS  Google Scholar 

  • Hunter S (1985) The rostral mesencephalon in Parkinson’s and Alzheimer’s disease. Acta Neuropathol 68: 326–334

    Google Scholar 

  • Hutchison WD, Lozano AM, Tasker RR et al (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 113: 557–563

    Article  PubMed  CAS  Google Scholar 

  • Irrizary MC, Growdon W, Gomez-Isla T et al (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J Neuropathol Exp Neurol 57: 334–337

    Article  Google Scholar 

  • Ito H, Goto S, Sakamoto S, Hirano A (1992) Calbindin-D28K in the basal ganglia of patients with Parkinsonism. Ann Neurol 32: 543–550

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Kosaka H, Matsumoto S, Imai T (1996) Striatal efferent involvement and its correlation to levodopa efficiacy in patients with multiple system atrophy. Neurology 47: 1291–1299

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Weis S, Mehraein P, Müller-Höcker J (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: An immunohictochemical and morphometric study. Mov Disord 12: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Lewis V, Donaldson D, Przedborski S (1997) Apoptosis and Parkinson’s disease (PD). Neurology 48: A323

    Google Scholar 

  • Javoy-Agid F, Scatton B, Ruberg M et al (1989) Distribution of monoaminergic, cholinergic and gabaergic markers in the human cerebral cortex. Neuroscience 29: 251–269

    Article  PubMed  CAS  Google Scholar 

  • Jellinger (1988) The pedunculopontine nucleus in Parkison’s disease, supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51: 540–544

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1989) Pathology of Parkinson’s syndrome. In: Calne DB (ed) Drugs for the treatment of Parkinson’s disease. Springer, Berlin Heidelberg New York Tokyo, pp 47–112

    Chapter  Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197

    Article  CAS  Google Scholar 

  • Jellinger K (1993) Pathogenese und Pathophysiologie der Parkinson-Krankheit. Neuropsychiatrie 7: 29–37

    Google Scholar 

  • Jellinger KA (1996) Die Bewegungsstörungen im höheren Lebensalter. In: Zapotoczky HG, Fischhoff PK (Hrsg) Handbuch der Gerontopsychiatrie. Springer, Wien New York, pp 202–290

    Chapter  Google Scholar 

  • Jellinger KA (1997) Morphological substrates of dementia in parkinsonism. A critical update. J Neural Transm [Suppl] 51: 123–147

    Google Scholar 

  • Jellinger KA (1998) Neuropathology of movement disorders. Neurosurg Clin North Am 9: 237–262

    CAS  Google Scholar 

  • Jellinger KA (1999) Cell death mechanisms in Parkinson’s disease. J Neural Transm (in press)

    Google Scholar 

  • Jellinger KA, Bancher C (1996) Dementia with Lewy bodies. Relationship to Parkinson’s and Alzheimer’s disease. In: McKeith LG, Perry E et al (eds) Dementia with Lewy bodies. Cambridge University Press, New York, pp 268–286

    Chapter  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’ disease. Neurology 56 [Suppl 3] pp 161–170

    Article  Google Scholar 

  • Johansson F, Malm J, Nordh E, Hariz M (1997) Usefulness of pallidotomy in advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 125–132

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Smutzer G, Whitty CJ, Myers A, Bannon MJ (1997) Differential modification of dopamin transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson’s, Alzheimer’s with parkinsonism, and Alzheimer’s disease. Mov Disord 12: 885–897

    Article  PubMed  CAS  Google Scholar 

  • Juncos JL, Hirsch EC, Malessa S et al (1991) Mesencephalic cholinergic nuclei in progressive supranuclear palsy. Neurology 41: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Kastner A, Hirsch EC, Agid Y, Javoy-Agid F (1993) Tyrosine hydroxylase protein and messenger RNA in the dopaminergic neurons of patients with Parkinson’s disease. Brain Res 606: 341–345

    Article  PubMed  CAS  Google Scholar 

  • Kienzl E, Puchinger L, Jellinger K et al (1995) The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 134 [Suppl]: 69–75

    Article  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven patterns of dopamine loss in the striatum of patients with Parkinson’s disease. N Engl J Med 318: 876–880

    Article  PubMed  CAS  Google Scholar 

  • Koller W, Pahwa R, Busenbark K et al (1997) High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 42: 292–299

    Article  PubMed  CAS  Google Scholar 

  • Kösel S, Egensperger R, von Eitzen U et al (1997) On the question of apoptosis in the substantia nigra in Parkinson’s disease. Acta Neuropathol 93: 105–109

    Article  PubMed  Google Scholar 

  • Kraus JK, Jankovic J, Lai EC et al (1997) Posteroventral medial pallidotomy in Levodopa-unresponsive parkinsonism. Arch Neurol 54: 1026–1029

    Article  Google Scholar 

  • Kume A, Takahashi A, Hashizume Y (1993) Neuronal cell loss of the striatonigral system in multiple system atrophy. J Neurol Sci 117: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Kupsch A, Earl C (1998) Neurosurgical interventions in the treatment of idiopathic Parkinson disease: neurostimulation and neural implantation. J Molec Med 77: 178–184

    Article  Google Scholar 

  • Lach H, Grimes D, Benoit B, Minkiewicz-Janda A (1992) Caudate nucleus pathology in Parkinson’s disease. Ultrastructural and biochemical findings in biopsy material. Acta Neuropathol 83: 352–360

    Article  PubMed  CAS  Google Scholar 

  • Lehericy S, Hirsch EC, Pervera-Plerot P et al (1993) Heterogeneity of the degeneration of choliergic neurons in basal forebrain in patients with Alzheimer’s disease. J Comp Neurol 330: 15–31

    Article  PubMed  CAS  Google Scholar 

  • Leigh JR, Zee DS (1991) The neurology of eye movement, 2nd edn. FA Davis Philadelphia

    Google Scholar 

  • Limousin P, Krack P, Pollak P et al (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New Engl J Med 339: 1105–1111

    Article  PubMed  CAS  Google Scholar 

  • Linert W, Herlinger E, Jameson RF et al (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen — their mutual interactions and possible implication in the development of Parkinson’s disease. Biochem Biophys Acta 1316: 160–168

    Article  PubMed  Google Scholar 

  • Litvan I, Hauw JJ, Bartko JJ et al (1996) Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 55: 97–105

    Article  PubMed  CAS  Google Scholar 

  • Loughlin SE, Foote SL, Bloom FE (1986) Efferent projections of nucleus locus coeruleus: Topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience 18: 291–306

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degenerations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. E Arnold, London, pp 280–366

    Google Scholar 

  • Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: A comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345: 562–578

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Rinne JO, Collan Y et al (1996) A quantitative morphometrical study of the neuron degeneration in the substantia nigra in patients with Parkinson’s disease. J Neurol Sci 140: 40–45

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Röyttä M, Rinne JO et al (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using disector counts. J Neurol Sci 151: 83–87

    Article  PubMed  CAS  Google Scholar 

  • Malessa S, Hirsch EC, Cerver P et al (1990) Catecholaminergic systems in the medulla obiongata in Parkinsonian syndromes. A quantitative immunohistochemical study in Parkinson’s disease, progressive supranuclear palsy, and striatonigral degeneration. Neurology 40: 1739–1742

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2: 1–7

    PubMed  CAS  Google Scholar 

  • Marek KL, Seibyl JP, Zoghbi SS et al (1996) (123I)β-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46: 231–237

    Article  PubMed  CAS  Google Scholar 

  • Marie RM, Barre L, Rioux P et al (1995) PET imaging of neocortical monoaminergic terminals in Parkinson’s disease. J Neural Transm (PD-Dem Sect) 9: 55–71

    Article  CAS  Google Scholar 

  • Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10: 505–519

    Google Scholar 

  • Matzuk MM, Saper CB (1985) Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol 18: 552–555

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (1989) Biochemical neuroanatomy of the basal ganglia. In: Calne DB (ed) Drugs for the treatment of Parkinson’s disease. Handbook of experimental pharmacology, vol 88. Springer, Wien-New York, pp 112–148

    Google Scholar 

  • McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonisrn indicates active neuropathological process. Ann Neurol 24: 574–576

    Article  PubMed  CAS  Google Scholar 

  • McRitchie DA, Cartwright HR, Halliday GM (1997) Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol 144: 202–213

    Article  PubMed  CAS  Google Scholar 

  • Miller GW, Staley JK, Heilman CJ et al (1997) Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 41: 530–539

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Aambrook MA, Jackson A et al (1990) Basal ganglia function in experimental movement disorders. In: Franks AJ (ed) Function and dysfunction in the basal ganglia. Manchester University Press, Manchester, NY, pp 94–109

    Google Scholar 

  • Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm [Suppl] 50: 125–140

    Article  CAS  Google Scholar 

  • Monza D, Soliveri P, Radice V et al (1998) Cognitive dysfunction and impaired organization of complex motility in degenerative Parkinsonian syndromes. Arch Neurol 55: 372–378

    Article  PubMed  CAS  Google Scholar 

  • Morrish PK, Sawle GV, Brooks DJ (1996) Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain 119: 2097–2103

    Article  PubMed  Google Scholar 

  • Mufson EJ, Conner JM, Kordower JH (1995) Nerve growth factor in Alzheimer’s disease. Defective retrograde transport to nucleus basalis. Neuroreport 6: 1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Neill TH, Brown SA, Rafols JA, Shoulson L (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res 455: 148–152

    Article  Google Scholar 

  • Nieuwenhuys R, Voogel J, Van Huizen C (1988) The human central nervous system. A synopsis and atlas, 3rd edn. Springer, Berlin Heidelberg New York Tokyo.

    Book  Google Scholar 

  • Nirenberg MJ, Vaughan RA, Uhl GR et al (1996) The dopamin transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16: 436–447

    PubMed  CAS  Google Scholar 

  • Nishimura M, Tomimoto H, Suenaga T, et al (1994) Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson’s disease brains. Brain Res 634: 339–344

    Article  PubMed  CAS  Google Scholar 

  • Nishio T, Furukawa S, Akiguchi I, Sunohara N (1998) Medial nigral dopamine neurons have rich neurotrophin support. NeuroReport 9: 2847–2851

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Guridi J, DeLong M (1997) Surgery for Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 2–8

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Tatton N, Redman R, Perl D, Walker R, Tatton WG (1998) Apoptosis and mitochondrial potential in Parkinson’s disease (abstract). Ann Neurol 44: 452

    Google Scholar 

  • Olszewski J, Baxter D (1982) Cytoarchitecture of the human brain stem 2nd edn. Karger, Basel

    Google Scholar 

  • Ondo W, Jankovic J, Schwartz K, Almaguer M, Simpson RK (1998) Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology 51: 1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Otsuka M, Ichiya Y, Kuwabara Y et al (1996) Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlation with the three main symptoms. J Neurol Sci 136: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Pahwa R, Paolo A, Tröster A, Koller W (1998) Cognitive impairment in Parkinson’s disease. Eur J Neurol 5: 431–441

    Article  PubMed  Google Scholar 

  • Pakkenberg B, Moller A, Gundersen HJG et al (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54: 30–33

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal-ganglia-thalamo-corticol loop. Brain Res Rev 20: 91–127

    Article  PubMed  CAS  Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subtypes of Parkinson’s disease. J Neuropathol Exp Neurol 50: 143–155

    Article  Google Scholar 

  • Percheron G, Francois C, Yelnik J et al (1994) The basal ganglia related system of primates: Definition, description and informational analysis. In: Percheron G, McKensie JS, Féger J (eds) The basal ganglia, Vol IV, New ideas and data on structure and function. Plenum Press, New York, pp 3–20

    Chapter  Google Scholar 

  • Perry EK, Irving D, Kerwin JM et al (1993) Cholinergic transmitter and neurotrophic activities in Lewy body dementia: similarity to Parkinson’s and distinction from Alzheimer disease. Alzheimer Dis Assoc Disord 7: 69–79

    Article  PubMed  CAS  Google Scholar 

  • Pillon B, Deweer B, Malapani C et al (1994) Explicit memory disorders of demented parkinsonian patients and underlying neuronal basis. In: Korczyn AD (ed) Dementia in Parkinson’s disease. Monduzzi, Bologna, pp 265–271

    Google Scholar 

  • Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52: 183–191

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Clanet M, Motastruc JL et al (1989) Abnormal ocular movements in Parkinson’s disease. Brain 112: 1193–1214

    Article  PubMed  Google Scholar 

  • Reid WJG, Broe, GA, Morris JGL (1992) The roile of cholinergic deficiency in neuropsychological deficits in idiopathic Parkinson’s disease. Dementia 3: 114–120

    Google Scholar 

  • Riederer P, Rausch WD, Birkmayer W et al (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson’s disease and metabolic encephalopathies. J Neural Transm [Suppl] 14: 121–133

    CAS  Google Scholar 

  • Rinne JO, Rummukainen J, Paljärvi J, Rinne UK (1989) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 26: 47–50

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Burn DJ, Mathias CJ et al (1995a) Positron emission tomography studies on the dopaminergic system and striatal opioid binding in the olivopontocerebellar atrophy variant of multiple system atrophy. Ann Neurol 37: 568–573

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Leihinnen A, Ruottinen H et al (1995b) Increased densitiy of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease — A PET study with [C-ll]raclopride. J Neurol Sci 132: 156–161

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Kuikka JT, Berström MA et al (1997) Striatal dopamine transporter in Parkinson’s disease; a study with a new radioligand, (123I)B-CIT-FP. Parkinsonism Rel Disord 3: 77–81

    Article  CAS  Google Scholar 

  • Robertson H (1992) Dopamine receptor interactions: Some implications for the treatment of Parkinson’s disease. Trends Neurosci 15: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Ruberg M, Agid Y (1988) Dementia in Parkinson’s disease. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 20, Psychopharmacology of aging nervous system. Plenum Press, New York, pp 157–206

    Google Scholar 

  • Saper CD, German DC, White CL (1985) Neuronal pathology in the nucleus basalis of Meynert and associated cell groups in senile dementia of the Alzheimer’s type. Possible role of cell loss. Neurology 35: 1089–1095

    CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251: 247–250

    Article  Google Scholar 

  • Scarnati E, Casbarri A, Campana E, Pacitti C (1987) The organization ot the nucleus tegmenti pedunculopontine neurons projecting to basal ganglia and thalamus. Neurosci Lett 79: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Schapira AHV (1995) Oxidative stress in Parkinson’s disease. Neuropathol Appl Neurobiol 21: 3–9

    Article  PubMed  CAS  Google Scholar 

  • Sims KS, Williams RS (1990) The human amygdaloid complex. Neuroscience 36: 449–472

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-synuclein in Lewy bodies. Nature 388: 839–840

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R et al (1998) α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Biesold D (1990) Brain cholinergic systems. Oxford University Press, Oxford

    Google Scholar 

  • Stoessl AJ, Ruth TJ (1998) Neuroreceptor imaging: new developments om PET and SPECT imaging of neuroreceptor binding (including dopamine transporters, vesicle transporters and post synaptic receptor sites). Curr Opin Neurol 11: 327–333

    Article  PubMed  CAS  Google Scholar 

  • Strafella A, Ashby P, Munz M et al (1997) Inhibition of voluntary activity by thalamic stimulation in humans — relevance for the control of tremor. Mov Disord 12: 727–737

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Leung CL, Liem RKH (1996) Phosphorylation of the high molecular weight neurofilament protein (NF-H) by cdk5 and p53. J Biol Chem 271: 14245–14251

    Article  PubMed  CAS  Google Scholar 

  • Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in idiopathic parkinson’s disease. Acta Neurol Scand 69: 20–28

    Article  Google Scholar 

  • Taha JM, Favre J, Baumann TK, Burchiel KJ (1997) Tremor control after pallidotomy in patients with Parkinson’s disease — correlation with microrecording findings. J Neurosurg 86: 642–647

    Article  PubMed  CAS  Google Scholar 

  • Tasker RR, Lang AE, Lozano AM (1997) Pallidal and thalamic surgery for Parkinson’s disease. Exp Neurol 144: 35–40

    Article  PubMed  CAS  Google Scholar 

  • Tissingh G, Booij J, Winogrodzka A et al (1997) IBZM-and CIT-SPECT of the dopaminergic system in parkinsonism. J Neurol Transm [Suppl] 50: 31–37

    Article  CAS  Google Scholar 

  • Tissingh G, Bergmans P, Booij J et al (1998) Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [1-123]β-cit spect. J Neurol 245: 14–20

    Article  PubMed  CAS  Google Scholar 

  • Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29

    Article  PubMed  CAS  Google Scholar 

  • Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119–131

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VM-Y (1994) Phosphorylation of neuronal cytoskeletal proteins in Alzheimer’s disease and Lewy body dementia. Ann NY Acad Sci 747: 92–109

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VMY (1998) Aggregation of neurofilament and α-synuclein proteins in Lewy bodies — Implications for the pathogenesis of Parkinson’s disease and Lewy body dementia. Arch Neurol 55: 151–152

    Article  PubMed  CAS  Google Scholar 

  • Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in 1-dopa treated Parkinson’s disease patients with and without dyskinesias. Neurology 49: 717–723

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43: 555–560

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Walther D, Mash D et al (1994) Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 35: 494–498

    Article  PubMed  CAS  Google Scholar 

  • Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons in Parkinson’s disease. Neuroscience 63: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Vereecken ThHLG, Vogels OJM, Nieuwenhuys R (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 15: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Herrero MT, Levy R et al (1996) Consequences of nigrostriatal denervation on the Y-aminobutyric acidic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology 46: 502–509

    Article  Google Scholar 

  • Wakabayashi K, Takahashi H, Takeda S et al (1988) Parkinson’s disease: The presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 76: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Wills AJ, Thompson PD, Findley LJ, Brooks DJ (1996) A positron emission tomography study of primary orthostatic tremor. Neurology 46: 747–752

    Article  PubMed  CAS  Google Scholar 

  • Xuereb JH, Perry EK, Candy JM et al (1990) Parameters of cholinergic neurotransmission in the thalamus in Parkinson’s disease and Alzheimer’s disease. J Neurol Sci 99: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Yung KKL, Smith AD, Levey AL, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat — Evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8: 861–869

    Article  PubMed  CAS  Google Scholar 

  • Zubenko GS (1992) Biological correlates of clinical heterogeneity in primary dementia. Neuropsychopharmacology 6: 72–93

    Google Scholar 

  • Zubenko GS, Moossy J, Kopp U (1990) Neurochemical correlates of major depression in primary dementia. Arch Neurol 47: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Zweig RM, Jankel WR, Hedreen JC et al (1989a) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Zweig RM, Ross CA, Hedreen JC et al (1989b) Neuropathology of aminergic nuclei in Alzheimer’s disease. In: Iqbal K, Wisniewski HM (eds) Alzheimer’s disease and related disorders. Liss, New York, pp 353–365

    Google Scholar 

  • Zweig RM, Cardilio JE, Cohen M, Giere S, Hedreen JC (1993) The locus ceruleus and dementia in Parkinson’s disease. Neurology 43: 986–991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Jellinger, K.A. (1999). Post mortem studies in Parkinson’s disease — is it possible to detect brain areas for specific symptoms?. In: Przuntek, H., Müller, T. (eds) Diagnosis and Treatment of Parkinson’s Disease — State of the Art. Journal of Neural Transmission. Supplementa, vol 56. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6360-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6360-3_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83275-2

  • Online ISBN: 978-3-7091-6360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics