Skip to main content

Liquid-Vapor Adiabatic Phase Changes and Related Phenomena

  • Chapter
Nonlinear Waves in Real Fluids

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 315))

Abstract

Adiabatic phase changes in liquid-vapor systems are described experimentally and theoretically. The emphasis is on real systems, with departures from equilibrium (metastability). The phase changes are driven by pressure differences and tend to be rapid. Typically, the phase changes occur across shockfronts. Analog systems are also described. In the liquid-vapor systems, at least five distinct phase changes have been discovered within recent years. Several of the phenomena were not predicted in advance. The discoveries reported here were made by various researchers, including co-authors of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, P.A. and D.A. Sullivan: On the possibility of complete condensation shock waves in retrograde fluids, J. Fluid Mech., 70, 4 (1975), 639–649.

    Article  Google Scholar 

  2. Dettleff, G., P.A. Thompson, G.E.A. Meier and 11.-D. Speckmann: An experimental study of liquefaction shock waves, J. Fluid Mech., 95, 2 (1979), 279–304.

    Article  Google Scholar 

  3. Dettleff, G., G.E.A. Meier, B.-D. Speckmann, P.A. Thompson and C. Yoon: Experiments in shock liquefaction, in: Proc. 13th Int’l Symp. on Shock Tubes and Waves, (Ed. C.E. Trainor and J.G. Hall ), State Univ. of New York Press, 1982.

    Google Scholar 

  4. Thompson, P.A. and Y.-G. Kim: Direct observation of shock splitting in a vapor-liquid system, Phys. Fluids 26, 11 (1983), 3211–3215.

    Article  Google Scholar 

  5. Speckmann, H.-D.: Aufspaltung von kondensationsstoßwellen in fluiden hoher spezifischer Wärme, Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung (Herausgegeben von E.-A. Müller) 76 (1984).

    Google Scholar 

  6. Thompson, P.A., Y.-G. Kim and G.E.A. Meier: Flow visualization of a shock wave by simple refraction of a ruled background grid, in: Optical Methods in Dynamics (Ed. M. Pichal ), Springer-Verlag, Berlin 1984, 225–231.

    Google Scholar 

  7. Thompson, P.A. and K.C. Lambrakis: Negative shock waves, J. Fluid Mech., 60, 1 (1973), 187–208.

    Article  MATH  Google Scholar 

  8. Cramer, M.S. and A. Kluwick: On the propagation of waves exhibiting both positive and negative nonlinearity, J. Fluid Mech., 142 (1984), 9–37.

    Article  MATH  MathSciNet  Google Scholar 

  9. Thompson, P.A., G.C. Carofano and Y.-G. Kim: Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube, J. Fluid Mech., 166 (1986), 57–92.

    Article  MATH  Google Scholar 

  10. Borisov, A.A., A1.A. Borisov, S.S. Kutateladze and V.E. Nakoryakov: Rarefaction shock wave near the critical liquid vapour point, J. Fluid Mech., 126 (1983), 59–73.

    Article  Google Scholar 

  11. Slemrod, M.: Korteweg theory and van der Waals fluids, in: Adiabatic Waves in Liquid-Vapor Systems (Ed. G.E.A. Meier and P.A. Thompson) Springer-Verlag, Berlin 1990. To appear.

    Google Scholar 

  12. Chaves, H.: Phasenübergänge und Wellen bei der Entspannung von Fluiden hoher spezifscher Wärme, Dissertation, Georg-August-Universität, Göttingen, 1980.

    Google Scholar 

  13. Skripov, V.P. and P.A. Pavlov: Superheating and explosive boiling of liquids, Sov. Tech. Rev. B. Thermal Physics, 2, (1989).

    Google Scholar 

  14. Skripov, V.P.: Metastable Liquids, John Wiley, New York 1974.

    Google Scholar 

  15. Lighthill, M.J.: Viscosity effects in waves of finite amplitude, Surveys in Mechanics (Ed. G.K. Batchelor & R.M. Davies ), Cambridge University Press 1956.

    Google Scholar 

  16. Thompson, P.A.: Compressible Fluid Dynamics, Rosewood Press, Troy, New York 1972.

    Google Scholar 

  17. Thompson, P.A.: A Fundamental derivative in gasdynamics, Phys. Fluids, 14, (1971), 1843–1849.

    Article  MATH  Google Scholar 

  18. Lambrakis, K.C.: Negative-r fluids, Dissertation, Rensselaer Polytechnic Institute 1972.

    Google Scholar 

  19. Thompson, P.A., G.C. Carofano, and Y.-G. Kim: Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube, J. Fluid Mech., 166 (1986), 57–92.

    Article  MATH  Google Scholar 

  20. Planck, M.: Treatise on Thermodynamics, Longmans-Green, 1903, 150–152.

    Google Scholar 

  21. Van der Waals, J.D.: Lehrbuch der Thermodynamik, Bearbeitet von Ph. Kohnstamm, Maas und Van Suchtelen, Leipzig 1908.

    Google Scholar 

  22. Bethe, H.A.: The theory of shock waves for an arbitrary equation of state, Office of Scientific Research and Development, Washington, Report No. 575 (1942), 57.

    Google Scholar 

  23. Zel’ dovich, Ya.B.: On the possibility of rarefaction shock waves, Zh. Eksp. Teor. Fiz., 4 (1946), 363–364.

    Google Scholar 

  24. Landau, L.D. and E.M. Lifshitz: Fluid Mechanics (1959) Pergamon, 496.

    Google Scholar 

  25. Thompson, P.A., Y.-G. Kim and G.E.A. Meier: Shock-tube studies with incident liquefaction shocks, in: Proceedings of the 14th Int’l. Symp. Shock Tubes and Waves, University of Sydney, Australia 1984, 413–420.

    Google Scholar 

  26. Thompson, P.A., H. Chaves, G.E.A. Meier, Y.-G. Kim and H.-D. Speckmann: Wave splitting in a fluid of large heat capacity, J. Fluid Mech., 185 (1987), 385–414.

    Article  Google Scholar 

  27. Chen, G., P.A. Thompson and J.W. Bursik: Soundspeed measurements in vapor-liquid mixtures behind shock waves, Exp. in Fluids, 4 (1986), 279–282.

    Article  Google Scholar 

  28. Borisov, A.A., Al.A. Borisov, S.S. Kutateladze and V.E. Nakoryakov: Rarefaction shock wave near the critical liquid vapour point, J. Fluid Mech., 126 (1983), 59–73.

    Article  Google Scholar 

  29. Kutateladze, S.S., V.E. Nakoryakov and A.A. Borisov: Rarefaction waves in liquid and gas-liquid media, Ann. Rev. of Fluid Mech., 19 (1987), 577–600.

    Article  Google Scholar 

  30. Zauner, E. and G.E.A. Meier: Phase changes of a large-heat-capacity fluid in transcritical expansion flows, in: Adiabatic Waves in Liquid-Vapor Systems (Ed. G.E.A. Meier and P.A. Thompson) Springer-Verlag, Berlin 1990. To appear.

    Google Scholar 

  31. Thompson, P.A., Y.-G. Kim, C.J. Yoon and Y. Chan: Nonequilibrium, near-critical states in shock-tube experiments, in: Proceedings 16th Int’l. Symp. on Shock Tubes and Waves (Ed. H. Grönig ), VCH, Weinheim, Federal Republic of Germany, 1988, 342–349.

    Google Scholar 

  32. Menikoff, R. and B.J. Plohr: Riemann problem for fluid flow of real materials, Rev. Mod. Phys., 61, 1989, 75.

    Article  MATH  MathSciNet  Google Scholar 

  33. Hobbs, D.E.: A virial equation of state utilizing the principle of corresponding states. Dissertation, Rensselaer Polytechnic Institute 1983.

    Google Scholar 

  34. Kontorovich, V.M.: Concerning the stability of shock waves, Sov. Phys: Tech. Phys., 6 (1957), 1179–1181.

    Google Scholar 

  35. Fowles, G.R. and A.F.P. Houwing: Instability of shock and detonation waves, Phys. Fluids, 27, (1984), 1982–1990.

    Article  MATH  MathSciNet  Google Scholar 

  36. Teshukov, V.M.: Stability of shock waves and general equations of state, in: Adiabatic Waves in Liquid-Vapor Systems (Ed. G.E.A. Meier and P.A. Thompson) Springer-Verlag, Berlin 1990. To appear.

    Google Scholar 

  37. Shepherd, J.E., P.A. Thompson and H.-J. Cho: Alternating stability and instability of liquefaction shockfronts in 2,2,4-Trimethylpentane, To appear in: Proceedings 17th Int’l Symp. on Shock Waves and Shock Tubes, held July 17–21, Lehigh University, Bethlehem, Pennsylvania 1989.

    Google Scholar 

  38. Schneer, G.: 2-D transonic flow with energy supply by homogeneous condensation: Onset condition and 2-D structure of steady Laval nozzle flow, Exp. in Fluids, 7 (1989), 145–156.

    Article  Google Scholar 

  39. Hobbs, David E.: Private communication 1982.

    Google Scholar 

  40. Prandtl, L.: Remarks, Atti del V Convengno Volta, Reale Accademia d’Italia, Roma 558 (1936), 196–197.

    Google Scholar 

  41. Hermann, R.: Der Kondensationstoß in Überschall-Windkanaldüsen, Luftahrtforschung, 19 (1942), 201–209.

    Google Scholar 

  42. Traugott, S.: Private communication 1988.

    Google Scholar 

  43. Fujita, T. Theordore: The Downburst, Satellite and Mesometorology Research Project, Univ. of Chicago 1985.

    Google Scholar 

  44. Emanuel, Kerry A.: A similarity theory for unsaturated downdrafts within clouds, J. of Atmos. Sci., 38 (1981), 1541–1557.

    Article  Google Scholar 

  45. Srivastava, R.C.: A simple model of evaporatively driven downdraft: Application to microburst downdraft, J. of Atmos. Sci., 42 (1985), 1004–1023.

    Article  Google Scholar 

  46. Campbell, James F., Joseph R. Chambers and Christopher L. Rumsey: Observation of airplane flowfields by natural condensation effects, J. Aircraft, 26, 7 (1989).

    Article  Google Scholar 

  47. Schneer, G.H. and U. Dohrmann: Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation, AIAA Journal (1989), 89–1834.

    Google Scholar 

  48. Schneer, G.H. and 13. Dohrmann: Numerical investigation of nitrogen condensation in 2-D Transonic flows in cryogenic wind tunnels, in: IUTAM Symposium, Adiabatic Waves in Liquid-Vapor Systems, Göttingen, F.R. Germany 1990.

    Google Scholar 

  49. Grieve, Richard A.F.: Impact cratering on the Earth, Scientific American, 262, 4 (1990), 66–73.

    Article  Google Scholar 

  50. Silver, L.T. and P.H. Schultz: Geological implications of impacts of large asteroids and comets on the Earth, Geolog. Soc. Amer., special paper 190 (1982).

    Google Scholar 

  51. Sneck, H. James, P.A. Thompson, B.E. Hand, B.R. Meyer, Chen Ping: Modeling of the champagne effect, in: Fundamental Aspects of Gas-Liquid Flows, Amer. Soc. Mech. Engrs. FED-29, 1985.

    Google Scholar 

  52. Simoneau, R.J.: Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas. NASA Technical Paper 1839, Lewis Research Center, Cleveland, Ohio 1981.

    Google Scholar 

  53. Kling, G.W., M.A. Clark, H.R. Compton, J.D. Devine, W.C. Evans, A.M. Humphrey, E.J. Koenigsberg, J.P. Lockwood, M.L. Tuttle, and G.N. Wagner: The 1986 Lake Nyos gas disaster in Cameroon, West Africa, Science 236, (1987) 169–175.

    Article  Google Scholar 

  54. Stager, C.: Killer Lake, National Geographic, September Issue (1987) 404–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Thompson, P.A. (1991). Liquid-Vapor Adiabatic Phase Changes and Related Phenomena. In: Kluwick, A. (eds) Nonlinear Waves in Real Fluids. International Centre for Mechanical Sciences, vol 315. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2608-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2608-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82277-7

  • Online ISBN: 978-3-7091-2608-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics