Skip to main content
Log in

2-D transonic flow with energy supply by homogeneous condensation: Onset condition and 2-D structure of steady Laval nozzle flow

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A generalized form of the similarity law for the condensation onset Mach number of water vapor in air in the transonic and supersonic range for water vapor flow in moist air is derived from well known basic approaches for supersonic nozzles. These statements are confirmed by extensive experimental investigations in Laval nozzles, as well as by results of other authors and computations on the basis of the Euler equation linked with the classical theory of nucleation and droplet growth. In this experimental research priority is given to the qualitative description of the two-dimensional condensation processes, and their effects in transonic flows in nozzles of different geometrical configuration (e. g. slightly or well curved). A quantitative discussion of 2-D structures in condensation regions requires the introduction of a characteristic angle along streamlines. It is then directly possible to describe the different types of compression disturbances in supersonic flows with heat addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

exponent of the similarity law

g :

condensate mass fraction [gH2O-liquid/kgmoist air]

p :

static pressure

R :

radius of the wall curvature

T :

absolute temperature

x :

cartesian coordinate, mixing ratio [gH2O-vapor/kgdry air]

y :

cartesian coordinate

α:

coefficient of the similarity law, Mach angle

α :

coefficient of the similarity law

\(\bar \alpha \) :

coefficient of the similarity law

α:

coefficient of the similarity law, average value

β:

coefficient of the similarity law

β:

coefficient of the similarity law, average value

δ:

angle between characteristic and iso-Mach line

Δ:

difference

ad :

adiabatic

c :

condensation onset

f :

frozen

n :

neutral point

s :

saturation

0:

stagnation condition

1:

initial state

*:

critical condition

-:

average value

=:

average value

K :

characteristic quantity of geometry

M :

Mach number

γ:

specific heat ratio

Φ:

relative humidity

References

  • Barschdorff, D. 1967: Kurzzeitfeuchtemessung und ihre Anwendung bei Kondensationserscheinungen in Laval-Düsen. Mitt. Inst. Strömungslehre Strömungsmasch. Univ. (TH) Karlsruhe 6, 18–39

  • Bartlmä, F. 1966: Ebene Überschallströmung mit Relaxation. In: Applied Mechanics (ed. Görtler, H.), pp. 1056–1060. Proc. IUTAM Symp. München, FRG, 1964. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Bratos, M.; Meier, G. E. A. 1976: Two-dimensional, two-phase flows in a Laval nozzle with nonequilibrium phase transition. Arch. Mech. 28, 1025–1037

    Google Scholar 

  • Dohrmann, U. 1988: Numerische Berechnung von 2-D Strömungen mit homogener Kondensation in Überschalldüsen. Private communication

  • Eber, G.; Gruenewald, K. H. 1941, 1942: Schlieren-photographs of condensation disturbances in the 40 × 40 cm Peenemünde supersonic wind tunnels. (Wegener P. P. 1985, private communication)

  • Frank, W. 1983: Stationäre Kondensationsvorgänge in Überschalldüsen. Forsch. Ingenieurwes. 49, 189–194

    Google Scholar 

  • Frank, W. 1985: Condensation phenomena in supersonic nozzles. Acta Mech. 54, 135–156

    Article  Google Scholar 

  • Hall, R. M. 1976: Cryogenic wind tunnels — unique capabilities for the aerodynamicist. NASA Tech. Mem. X-73920

  • Hall, R. M. 1979a: Onset of condensation effects as detected by total pressure probes in the Langley 0.3-meter transonic cryogenic tunnel. NASA Tech. Mem. 80072

  • Hall, R. M. 1979b: Onset of condensation effects with an NACA 0012-64 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel. NASA Tech. P. 1385

  • Hermann, R. 1942: Der Kondensationsstoß in Überschall-Windkanaldüsen. Luftfahrtforschung 19, 201–209

    Google Scholar 

  • Hill, Ph. G. 1966: Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25, 593–620

    Google Scholar 

  • Koppenwallner, G.; Dankert, C. 1979a: An experimental study of nitrogen condensation in a free jet expansion. In: Rarefied gas dynamics, 11th Symp. (ed. Campargue, R.), vol. II pp. 1107–1118. Paris: CEA

    Google Scholar 

  • Koppenwallner, G.; Dankert, C. 1979b: The homogeneous nitrogen condensation in expansion flows with ETW-relevant stagnation conditions. Proc. 1st. Int. Symp. Cryogenic Wind Tunnels, Southampton/UK 15.1–15.10

  • Oswatitsch, K. 1941: Die Nebelbildung in Windkanälen und ihr Einfluß auf Modellversuche. Jahrb. Dtsch. Luftfahrtforsch, 1, 692–703

    Google Scholar 

  • Oswatitsch, K. 1942: Kondensationserscheinungen in Überschalldüsen. Z. Angew. Math. Mech. 22, 1–14

    Google Scholar 

  • Schmidt, B. 1962: Beobachtungen über das Verhalten der durch Wasserdampfkondensation ausgelösten Störungen in einer Überschall-Windkanaldüse. Diss. Univ. (TH) Karlsruhe, FRG

    Google Scholar 

  • Schnerr, G. 1986: Homogene Kondensation in stationären transsonischen Strömungen durch Lavaldüsen und um Profile. Habil. Fakultät für Maschinenbau, Univ. (TH) Karlsruhe, FRG

    Google Scholar 

  • Schnerr, G. 1988: Homogeneous condensation in transonic flow. In: Atmospheric aerosols and nucleation (eds. Wagner, P. E.; Vali, G.). Proc. 12th Int. Conf. Atmospheric Aerosols and Nucleation, Wien, Austria (Lecture notes in physics, vol. 309). Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Schnerr, G.; Dohrmann, U. 1988: Theoretical and experimental investigation of 2-D diabatic transonic and supersonic flow fields. In: Symposium transonicum III (eds. Zierep, J.; Oertel, H.). Proc. IUTAM Symp. Göttingen, FRG. Berlin, Heidelberg, New York: Springer (in press)

    Google Scholar 

  • Schnerr, G.; Dohrmann, U. 1989: Ein numerisches Verfahren zur Berechnung stationärer transsonischer Strömungen mit Relaxation und Wärmezufuhr. Z. Angew. Math. Mech. 69 (to be published)

  • Volmer. M. 1939: Kinetik der Phasenbildung. Leipzig: Steinkopff

    Google Scholar 

  • Wagner, B. 1982: Estimation of simulation errors and investigation of operating range extensions for the European transonic windtunnel ETW. BMFT-FB-W 82-003

  • Wagner, B.; Düker, M. 1984: Prediction of condensation onset and growth in the European transonic wind tunnel ETW. AGARD-Conf. Proc. no. 348, 13-1–13-11

  • Wegener, P. P. 1954: Water vapor condensation process in supersonic nozzles. J. Appl. Phys. 25. 1485–1491

    Article  Google Scholar 

  • Wegener, P. P. 1964: Condensation phenomena in nozzles. Progr. Astronaut. Aeronaut. 15, 701–724

    Google Scholar 

  • Wegener, P. P. 1980: Study of experiments on condensation of nitrogen by homogeneous nucleation at states modelling those of the national transonic facility. Final Report to the NASA Langley Research Center on Grant NSG-1612

  • Wegener, P. P. 1985: 40 × 40 cm Windkanal Peenemünde: Überschalldüsen, Versuchsergebnisse, Schlierenaufnahmen. Private Communications, September

  • Wegener, P. P. 1987: Nucleation of nitrogen: experiment and theory. J. Phys. Chem. 91, 2479–2481

    Google Scholar 

  • Wegener, P. P.; Mack, L. M. 1958: Condensation in supersonic and hypersonic wind tunnels. Adv. Appl. Mech. 5, 307–447

    Google Scholar 

  • Wegener, P. P.; Pouring, A. A. 1964: Experiments on condensation of water vapor by homogeneous nucleation in nozzles. Phys. Fluids 7, 352–361

    Article  Google Scholar 

  • Zierep, J. 1965: Ähnlichkeitsgesetze für Profilströmungen mit Wärmezufuhr. Acta Mech. 1, 60–70

    Article  MATH  MathSciNet  Google Scholar 

  • Zierep, J. 1971: Similarity laws and modeling. In: Gasdynamics (ed. Wegener, P. P.). New York: Marcel Dekker

    Google Scholar 

  • Zierep, J. 1982: Ähnlichkeitsgesetze und Modellregeln der Strömungslehre, 2nd edn. Karlsruhe: G. Braun

    Google Scholar 

  • Zierep, J.; Lin, S. 1967: Bestimmung des Kondensationsbeginns bei der Entspannung feuchter Luft in Überschalldüsen. Forsch. Ingenieurwes. 33, 169–172

    Google Scholar 

  • Zierep, J.; Lin, S. 1968: Ein Ähnlichkeitsgesetz für instationäre Kondensationsvorgänge in der Laval-Düse. Forsch. Ingenieurwes. 34, 97–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is dedicated to my teacher of science, Professor Dr.-Ing. J. Zierep, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnerr, G. 2-D transonic flow with energy supply by homogeneous condensation: Onset condition and 2-D structure of steady Laval nozzle flow. Experiments in Fluids 7, 145–156 (1988). https://doi.org/10.1007/BF02332979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02332979

Keywords

Navigation