Skip to main content

The Frontal and Temporal Horn Ratio to Assess Dimension of Paediatric Hydrocephalus: A Comparative Volumetric Study

  • Conference paper
  • First Online:
Brain Edema XV

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 118))

Abstract

Magnetic resonance imaging and cranial ­ultrasound are the most frequently implemented imaging methods for investigating the infantile hydrocephalic brain. A general and reliable measurement index that can be equally applied in both imaging methods to assess dimension of ventricular dilatation is currently not available. For this purpose, a new parameter called the frontal and temporal horn ratio – determinable in coronal slices of the brain – was developed and evaluated in a comparative volumetric retrospective study: Statistical analyses of 118 MRIs of 46 different shunt-treated pediatric patients revealed a good linear correlation between the new index and the actual ventricular volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambarki K, Israelsson H, Wahlin A, Birgander R, Eklund A, Malm J (2010) Brain ventricular size in healthy elderly: comparison between Evans index and volume measurement. Neurosurgery 67:94–99

    Article  PubMed  Google Scholar 

  2. Antes S, Kiefer M, Schmitt M, Lechtenfeld M, Geipel M, Eymann R (2012) Frontal and temporal horn ratio – a valid and reliable index to determine ventricular size in paediatric hydrocephalus patients? Acta Neurochir Suppl 114:227–230

    Article  PubMed  Google Scholar 

  3. Evans W (1942) An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychatry 47:931–937

    Article  Google Scholar 

  4. Gilmore JH, Gerig G, Specter B, Charles HC, Wilber JS, Hertzberg BS, Kliewer MA (2001) Infant cerebral ventricle volume: a comparison of 3-D ultrasound and magnetic resonance imaging. Ultrasound Med Biol 27:1143–1146

    Article  PubMed  CAS  Google Scholar 

  5. Hoon AH Jr, Melhem ER (2000) Neuroimaging: applications in disorders of early brain development. J Dev Behav Pediatr 21:291–302

    Article  PubMed  Google Scholar 

  6. Horsch S, Bengtsson J, Nordell A, Langercrantz H, Adén U, Blennow M (2009) Lateral ventricular size in extremely premature infants: 3D MRI confirms 2D ultrasound measurements. Ultrasound Med Biol 35:360–366

    Article  PubMed  Google Scholar 

  7. Iova A, Garmashov A, Androutchenko N, Kehrer M, Berg D, Becker G, Garmashov Y (2004) Evaluation of the ventricular system in children using transcranial ultrasound: reference values for routine diagnostics. Ultrasound Med Biol 30:745–751

    Article  PubMed  Google Scholar 

  8. Jamous M, Sood S, Kumar R, Ham S (2003) Frontal and occipital horn width ratio for the evaluation of small and asymmetrical ventricles. Pediatr Neurosurg 39:17–21

    Article  PubMed  Google Scholar 

  9. Kulkarni AV, Drake JM, Armstrong DC, Dirks PB (1999) Measurement of ventricular size: reliability of the frontal and occipital horn ratio compared to subjective assessment. Pediatr Neurosurg 31:65–70

    Article  PubMed  CAS  Google Scholar 

  10. Leijser LM, Srinivasan L, Rutherford MA, Counsell SJ, Allsop JM, Cowan FM (2007) Structural linear measurement in the newborn brain: accuracy of cranial ultrasound compared to MRI. Peadiatr Radiol 37:640–648

    Article  Google Scholar 

  11. Leijser LM, de Bruine FT, Steggerda SJ, van der Grond J, Walther FJ, van Wezel-Meijler G (2009) Brain imaging findings in very preterm infants throughout the neonatal period: part I. Incidences and evolution of lesions, comparison between ultrasound and MRI. Early Hum Dev 85:101–109

    Article  PubMed  Google Scholar 

  12. Mann SA, Wilkinson JS, Fourney DR, Stoneham GW (2009) Comparison of computed tomography 3-dimensional volumetric analysis of ventricular size to visual radiological assessment. J Comput Assist Tomogr 33:789–794

    Article  PubMed  Google Scholar 

  13. Maunu J, Parkkola R, Rikalainen H, Lehtonen L, Haataja L, Lapinleimu H (2009) Brain and ventricles in very low birth weight infants at term: a comparison among head circumference, ultrasound, and magnetic resonance imaging. Pediatrics 123:617–626

    Article  PubMed  Google Scholar 

  14. O’Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29:245–249

    Article  PubMed  Google Scholar 

  15. Ouahba J, Luton D, Vuillard E, Garel C, Gressens P, Blanc N, Elmaleh M, Evrard P, Oury JF (2006) Prenatal isolated mild ventriculomegaly: outcome in 167 cases. BJOG 113:1072–1079

    Article  PubMed  CAS  Google Scholar 

  16. Patel TR, Bannister CM, Thorne J (2003) A study of prenatal ultrasound and postnatal magnetic imaging in the diagnosis of central nervous system abnormalities. Eur J Pediatr Surg 13:18–22

    Article  Google Scholar 

  17. Poland RL, Slovis TL, Shankaran S (1985) Normal values for ventricular size as determined by real time sonographic techniques. Pediatr Radiol 15:12–14

    Article  PubMed  CAS  Google Scholar 

  18. Senapati GM, Levine D, Smith C, Estroff JA, Barnewolt CE, Robertson RL, Poussaint TY, Mehta TS, Werdich XQ, Pier D, Feldman HA, Robson CD (2010) Frequency and cause of disagreements in imaging diagnosis in children with ventriculomegaly ­diagnosed prenatally. Ultrasound Obstet Gynecol 36:582–595

    Article  PubMed  CAS  Google Scholar 

  19. von Bezing H, Andronikou S, van Toorn R, Douglas T (2012) Are linear measurements and computerized volumetric ratios determined from axial MRI useful for diagnosing hydrocephalus in children with Tuberculous meningitis? Childs Nerv Syst 28(1):79–85

    Article  Google Scholar 

Download references

Conflict of Interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Antes MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Antes, S., Welsch, M., Kiefer, M., Gläser, M., Körner, H., Eymann, R. (2013). The Frontal and Temporal Horn Ratio to Assess Dimension of Paediatric Hydrocephalus: A Comparative Volumetric Study. In: Katayama, Y., Maeda, T., Kuroiwa, T. (eds) Brain Edema XV. Acta Neurochirurgica Supplement, vol 118. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1434-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1434-6_39

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1433-9

  • Online ISBN: 978-3-7091-1434-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics