Skip to main content
Log in

Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Structural size in the neonatal brain is of clinical importance. Cranial ultrasonography (cUS) is the primary method used for evaluating the neonatal brain and it is important to know whether linear measurements made using this technique are accurate.

Objective

To compare linear measurements of different cerebral structures made from neonatal cUS and contemporaneous MRI.

Materials and methods

Preterm and term infants studies with cUS and MRI on the same day were studied. Linear measurements made using both techniques from many cerebral structures were compared using a paired t-test.

Results

A total of 44 sets of scans from 26 preterm and 8 term infants were assessed. Small but significant differences between the cUS and MRI measurements (P<0.05) were found for the ventricular index, the posterior horn depth of the lateral ventricle, the extracerebral space and interhemispheric fissure, and the cortex of the cingulate gyrus. No significant differences were found for any other measurements.

Conclusion

Linear measurements from cUS are accurate for most neonatal cerebral structures. Significant differences compared to MRI were found for a few structures, but only for the cortex were the absolute differences marked and possibly of clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cooke RW, Abernethy LJ (1999) Cranial magnetic resonance imaging and school performance in very low birth weight infants in adolescence. Arch Dis Child 81:F116–F121

    CAS  Google Scholar 

  2. Peterson BS, Vohr B, Staib LH et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947

    Article  PubMed  CAS  Google Scholar 

  3. Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294

    Article  PubMed  Google Scholar 

  4. Horsch S, Muentjes C, Franz A et al (2005) Ultrasound diagnosis of brain atrophy is related to neurodevelopmental outcome in preterm infants. Acta Paediatr 94:1815–1821

    Article  PubMed  Google Scholar 

  5. Lodygensky GA, Rademaker K, Zimine S et al (2005) Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics 116:1–7

    Article  PubMed  Google Scholar 

  6. Levene MI (1981) Measurements of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child 56:900–904

    PubMed  CAS  Google Scholar 

  7. Govaert P, Pauwels W, Vanhaesebrouck P et al (1989) Ultrasound measurement of the subarachnoid space in infants. Eur J Pediatr 148:412–413

    Article  PubMed  CAS  Google Scholar 

  8. Mott SH, Bodensteiner KB, Allan WC (1992) The cavum septi pellucidi in term and preterm newborn infants. J Child Neurol 7:35–38

    Article  PubMed  CAS  Google Scholar 

  9. Libicher M, Troger J (1992) US measurement of the subarachnoid space in infants: normal values. Radiology 184:749–751

    PubMed  CAS  Google Scholar 

  10. Iai M, Tanabe Y, Goto M et al (1994) A comparative magnetic resonance imaging study of the corpus callosum in neurologically normal children and children with spastic diplegia. Acta Paediatr 83:1086–1090

    PubMed  CAS  Google Scholar 

  11. Anderson N, Wells E, Hay R et al (1996) Cerebellar vermis measurement at cranial sonography for assessing gestational age in the newborn weighing less than 2000 grams. Early Hum Dev 44:59–70

    Article  PubMed  CAS  Google Scholar 

  12. Jou HJ, Shyu MK, Wu SC et al (1998) Ultrasound measurement of the fetal cavum septi pellucidi. Ultrasound Obstet Gynecol 12:419–421

    Article  PubMed  CAS  Google Scholar 

  13. Davies MW, Swaminathan M, Chuang SL et al (2000) Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child 82:F218–F223

    CAS  Google Scholar 

  14. Makhoul IR, Goldstein I, Epelman M et al (2000) Neonatal transverse cerebellar diameter in normal and growth-restricted infants. J Matern Fetal Med 9:155–160

    Article  PubMed  CAS  Google Scholar 

  15. Davies MW, Swaminathan M, Betheras FR (2001) Measurement of the transverse cerebellar diameter in preterm neonates and its use in assessment of gestational age. Australas Radiol 45:309–312

    Article  PubMed  CAS  Google Scholar 

  16. Achiron R, Achiron A (2001) Development of the human fetal corpus callosum: a high-resolution, cross-sectional sonographic study. Ultrasound Obstet Gynecol 18:343–347

    Article  PubMed  CAS  Google Scholar 

  17. Lam WW, Ai VH, Wong V et al (2001) Ultrasonographic measurement of subarachnoid space in normal infants and children. Pediatr Neurol 25:380–384

    Article  PubMed  CAS  Google Scholar 

  18. Malinger G, Ginath S, Lerman-Sagie T et al (2001) The fetal cerebellar vermis: normal development as shown by transvaginal ultrasound. Prenat Diagn 21:687–692

    Article  PubMed  CAS  Google Scholar 

  19. Goldstein I, Makhoul IR, Tamir A et al (2002) Ultrasonographic nomograms of the fetal fourth ventricle: additional tool for detecting abnormalities of the posterior fossa. J Ultrasound Med 21:849–856

    PubMed  Google Scholar 

  20. Zalel Y, Seidman DS, Brandt N et al (2002) The development of the fetal vermis: an in-utero sonographic evaluation. Ultrasound Obstet Gynecol 19:136–139

    Article  PubMed  CAS  Google Scholar 

  21. Serhatlioglu S, Kocakoc E, Kiris A et al (2003) Sonographic measurement of the fetal cerebellum, cisterna magna, and cavum septum pellucidum in normal fetuses in the second and third trimesters of pregnancy. J Clin Ultrasound 31:194–200

    Article  PubMed  Google Scholar 

  22. Achiron R, Kivilevitch Z, Lipitz S et al (2004) Development of the human fetal pons: in utero ultrasonographic study. Ultrasound Obstet Gynecol 24:506–510

    Article  PubMed  CAS  Google Scholar 

  23. Chavez MR, Ananth CV, Smulian JC et al (2004) Fetal transcerebellar diameter measurement with particular emphasis in the third trimester: a reliable predictor of gestational age. Am J Obstet Gynecol 191:979–984

    Article  PubMed  Google Scholar 

  24. Triulzi F, Parazzini C, Righini A (2005) MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med 10:411–420

    PubMed  Google Scholar 

  25. Anderson NG, Laurent I, Cooke N et al (2005) Growth rate of corpus callosum in very premature infants. AJNR 26:2685–2690

    PubMed  Google Scholar 

  26. Horsch S, Bengtsson J, Nordell A et al (2006) Lateral ventricular size in extremely premature infants: 3D MRI confirms 2D ultrasound measurements. Proceedings of the Annual Meeting of the Pediatric Academic Societies, San Francisco, CA

  27. Anderson NG, Laurent I, Woodward LJ et al (2006) Detection of impaired growth of the corpus callosum in premature infants. Pediatrics 118:951–960

    Article  PubMed  Google Scholar 

  28. Anderson NG, Warfield SK, Wells S et al (2004) A limited range of measures of 2-D ultrasound correlate with 3-D MRI cerebral volumes in the premature infant at term. Ultrasound Med Biol 30:11–18

    Article  PubMed  Google Scholar 

  29. Mercuri E, Guzzetta A, Laroche S et al (2003) Neurologic examination of preterm infants at term age: Comparison with term infants. J Pediatr 142:647–655

    Article  PubMed  Google Scholar 

  30. Dubowitz L, Ricciw D, Mercuri E (2005) The Dubowitz neurological examination of the full-term newborn. Ment Retard Dev Disabil Res Rev 11:52–60

    Article  PubMed  Google Scholar 

  31. Cowan FM (1998) Sedation for magnetic resonance scanning of infants and young children. In: Whitwam JG, McCloy RF (eds) Principles and practice of sedation. Blackwell Healthcare, London, pp 206–213

    Google Scholar 

  32. Grasby DC, Esterman A, Marshall P (2003) Ultrasound grading of cerebral ventricular dilatation in preterm infants. J Paediatr Child Health 39:186–190

    PubMed  CAS  Google Scholar 

  33. London DA, Carroll BA, Enzmann DR (1980) Sonography of ventricular size and germinal matrix hemorrhage in premature infants. AJNR 1:295–300

    Google Scholar 

  34. Morony S, Marshall P, Langlois S (1984) Periventricular haemorrhage and ventricular dilatation detected by real time ultrasound in infants <1500 g birthweight. Aust Paediatr J 20:252

    Google Scholar 

  35. Silverboard G, Horder MH, Ahmann PA et al (1980) Reliability of ultrasound diagnosis of intracerebral hemorrhage and posthemorrhagic hydrocephalus: comparison with CT. Pediatrics 66:507–514

    PubMed  CAS  Google Scholar 

  36. Brann BS, Qualls C, Wells L et al (1991) Asymmetric growth of the lateral cerebral ventricle in infants with posthemorrhagic ventricular dilatation. J Pediatr 118:108–112

    Article  PubMed  Google Scholar 

  37. Martinussen M, Fischl B, Larsson HB et al (2005) Cerebral cortex thickness in 15-year-old adolescents with low birth weight measured by an automated MRI-based method. Brain 128:2588–2596

    Article  PubMed  CAS  Google Scholar 

  38. Ajayi-Obe M, Saeed N, Cowan FM et al (2000) Reduced development of cerebral cortex in extremely preterm infants. Lancet 356:1162–1163

    Article  PubMed  CAS  Google Scholar 

  39. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055

    Article  PubMed  CAS  Google Scholar 

  40. Kabani N, Le Goualher G, MacDonald D et al (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13:375–380

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was undertaken with financial support from The Doctor Catharina van Tussenbroek Foundation, The Academy of Medical Science, The Health Foundation, Philips Medical Systems, and the March of Dimes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances M. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leijser, L.M., Srinivasan, L., Rutherford, M.A. et al. Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI. Pediatr Radiol 37, 640–648 (2007). https://doi.org/10.1007/s00247-007-0485-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-007-0485-2

Keywords

Navigation