Skip to main content

Delivery Routes for Cell Therapy in Stroke

  • Chapter
  • First Online:
Cell-Based Therapies in Stroke

Abstract

Cells that have been used as experimental treatments in animal models of stroke have used one of three types of delivery routes – parenchymal, vascular, or ventricular, depending on the cell type transplanted, the stroke model used, the experimental question asked, and the underlying mechanism of repair. In this review, we will discuss each of these routes and their variations, including the routes chosen in ongoing or completed clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara N, Mizukawa K, Koide K, Mabe H, Nishino H (1994) Striatal grafts in infarct striatopallidum increase GABA release, reorganize GABAA receptor and improve water-maze learning in the rat. Brain Res Bull 33:483–488

    Article  PubMed  CAS  Google Scholar 

  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:e1000029

    Article  PubMed  Google Scholar 

  • Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103:285–293

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Onodera H, Yae T, Jian Z, Kogure K (1993) Neural grafting to ischemic CA1 lesions in the rat hippocampus: an autoradiographic study. Neuroscience 56:345–354

    Article  PubMed  CAS  Google Scholar 

  • Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882

    Article  PubMed  Google Scholar 

  • Barbosa de Fonseca LM, Gutfilen B, Rosado de Castro PH, Battistella V, Goldenberg RCS et al (2010) Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp Neurol 221:122–128

    Article  Google Scholar 

  • Battistella V, de Freitas GR, da Fonseca LM, Mercante D, Gutfilen B et al (2011) Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med 6:45–52

    Article  PubMed  CAS  Google Scholar 

  • Belichenko PV, Mattsson B, Johansson BB (2001) Neuronal and fibre organization in neocortical grafts placed in post-ischaemic adult rat brain: a three-dimensional confocal microscopy study. J Comp Pathol 124:142–148

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Saporta S, Poulos SG, Othberg A, Sanberg PR (1998a) Viability and survival of hNT neurons determine degree of functional recovery in grafted ischemic rats. Neuroreport 9:2837–2842

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998b) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Hadman M, Davis Sanberg C, Sanberg PR (2004) CNS entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389

    Article  PubMed  Google Scholar 

  • Chang CF, Morales M, Chou J, Chen HL, Hoffer B et al (2002) Bone morphogenetic proteins are involved in fetal kidney tissue transplantation-induced neuroprotection in stroke rats. Neuropharmacology 43:418–426

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Li Y, Wang L, Lu M, Zhang X et al (2001a) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M et al (2001b) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Li Y, Wang L, Zhang Z, Lu D et al (2001c) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Katakowski M, Li Y, Lu D, Wang L et al (2002) Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 69:687–691

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang ZG, Li Y, Wang L, Xu YX et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699

    Article  PubMed  CAS  Google Scholar 

  • Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26:605–614

    Article  PubMed  Google Scholar 

  • Dasari VR, Veeravalli KK, Saving KL, Gujrati M, Fassett D et al (2008) Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiol Dis 32:486–498

    Article  PubMed  CAS  Google Scholar 

  • Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085

    Article  PubMed  CAS  Google Scholar 

  • Farber SD, Onifer SM, Kaseda Y, Murphy SH, Wells DG et al (1988) Neural transplantation of horseradish peroxidase-labeled hippocampal cell suspensions in an experimental model of cerebral ischemia. Prog Brain Res 78:103–107

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Krupinski J, Goutan E, Marti E, Ambrosio S et al (2001) Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol 101:229–238

    PubMed  CAS  Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H et al (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692

    Article  PubMed  CAS  Google Scholar 

  • Folkerth RD, Durso R (1996) Survival and proliferation of nonneural tissues, with obstruction of cerebral ventricles, in a parkinsonian patient treated with fetal allografts. Neurology 46:1219–1225

    Article  PubMed  CAS  Google Scholar 

  • Geißler M, Dinse HR, Neuhoff S, Kreikemeier K, Meier C (2011) Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex. PLoS One 6:e20194

    Article  PubMed  Google Scholar 

  • Grabowski M, Christofferson RH, Brundin P, Johansson BB (1992a) Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience 51:673–682

    Article  PubMed  CAS  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB (1992b) Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain. Exp Neurol 116:105–121

    Article  PubMed  CAS  Google Scholar 

  • Guan XQ, Yu JL, Li LQ, Liu GX (2004) Study on mesenchymal stem cells entering the brain through the blood-brain barrier. Zhonghua Er Ke Za Zhi Chin J Pediatr 42:920–923

    Google Scholar 

  • Hall A, Guyer A, Leonardo C, Ajmo C, Collier L et al (2009a) Umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. J Neurosci Res 87:333–341

    Article  PubMed  CAS  Google Scholar 

  • Hall AA, Leonardo CC, Collier LA, Rowe DD, Willing AE et al (2009b) Delayed treatments for stroke influence neuronal death in rat organotypic slice cultures subjected to oxygen glucose deprivation. Neuroscience 164:470–477

    Article  PubMed  CAS  Google Scholar 

  • Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Newman M, Saporta S, Chen N, Sanberg C et al (2008) MIP-1α and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res 5:118–124

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Womble T, Saporta S, Chen N, Sanberg CD et al (2010) Human umbilical cord blood cells depress the microglial inflammatory response in vitro. Stem Cells Dev 19:221–227

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Saporta S, Chen N, Sanberg CD, Paul Sanberg PR et al (2011) The effect of human umbilical cord blood cells on survival and cytokine production by post-ischemic astrocytes in vitro. Stem Cell Rev Rep 6:523–531

    Article  Google Scholar 

  • Johnston RE, Dillon-Carter O, Freed WJ, Borlongan CV (2001) Trophic factor secreting kidney cell lines: in vitro characterization and functional effects following transplantation in ischemic rats. Brain Res 900:268–276

    Article  PubMed  CAS  Google Scholar 

  • Keimpema E, Fokkens MR, Nagy Z, Agoston V, Luiten PG et al (2009) Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol 35:89–102

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D et al (2004) Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 94:203–206

    Article  PubMed  CAS  Google Scholar 

  • Kondziolka D, Steinberg GK, Cullen SB, McGrogan M (2004) Evaluation of surgical techniques for neuronal cell transplantation used in patients with stroke. Cell Transplant 13:749–754

    Article  PubMed  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E et al (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    Article  PubMed  Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716

    Article  PubMed  CAS  Google Scholar 

  • Koshinaga M, Katayama Y, Takahata T, Suma T, Tsubokawa T (1995) Temporal pattern of synaptophysin expression in cryopreserved fetal hippocampal cells transplanted into ischemically damaged adult rat hippocampus. Cell Transplant 4:S9–S11

    Article  PubMed  Google Scholar 

  • Lappalainen RS, Narkilahti S, Huhtala T, Liimatainen T, Suuronen T et al (2008) The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats. Neurosci Lett 440:246–250

    Article  PubMed  CAS  Google Scholar 

  • Le PQ, Ferster A, Cotton F, Vertongen F, Vermylen C et al (2010) Sickle cell disease from Africa to Belgium, from neonatal screening to clinical management. Med Trop (Mars) 70:467–470

    Google Scholar 

  • Lee VM, Andrews PW (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J Neurosci 6:514–521

    PubMed  CAS  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim SJ, Kim DH et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629

    Article  PubMed  Google Scholar 

  • Lee HJ, Lim IJ, Lee MC, Kim SU (2010a) Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J Neurosci Res 88:3282–3294

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH et al (2010b) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106

    Article  PubMed  Google Scholar 

  • Leonardo C, Hall AA, Collier LA, Ajmo CT Jr, Willing AE et al (2010) HUCB cell therapy blocks the morphological change and recruitment of CD11b-expressing, isolectin-binding proinflammatory cells after MCAO. J Neurosci Res 88:1213–1222

    PubMed  CAS  Google Scholar 

  • Li Y, Chen J, Wang L, Lu M, Chopp M (2001a) Treatment of stroke in rat with intracarotid ­administration of marrow stromal cells. Neurology 56:1666–1672

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chen J, Chopp M (2001b) Adult bone marrow transplantation after stroke in adult rats. Cell Transplant 10:31–40

    PubMed  CAS  Google Scholar 

  • Li L, Jiang Q, Ding G, Zhang L, Zhang ZG et al (2010) Effects of administration route on ­migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cereb Blood Flow Metab 30:653–662

    Article  PubMed  Google Scholar 

  • Lin YC, Ko TL, Shih YH, Lin MY, Fu TW et al (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42:2045–2053

    Article  PubMed  Google Scholar 

  • Lu D, Mahmood A, Wang L, Li Y, Lu M et al (2001) Adult bone marrow stromal cells ­administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12:559–563

    Article  PubMed  CAS  Google Scholar 

  • Makinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T et al (2006) Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 1123:207–215

    Article  PubMed  Google Scholar 

  • Mampalam TJ, Gonzalez MF, Weinstein P, Sharp FR (1988) Neuronal changes in fetal cortex transplanted to ischemic adult rat cortex. J Neurosurg 69:904–912

    Article  PubMed  CAS  Google Scholar 

  • Minnerup J, Kim JB, Schmidt A, Diederich K, Bauer H et al (2011) Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke. Stroke 42:1757–1763

    Article  PubMed  Google Scholar 

  • Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J et al (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 160:1201–1206

    Article  PubMed  Google Scholar 

  • Netto CA, Hodges H, Sinden JD, Le Peillet E, Kershaw T et al (1993) Effects of fetal hippocampal field grafts on ischaemic-induced deficits in spatial navigation in the water maze. Neuroscience 54:69–92

    Article  PubMed  CAS  Google Scholar 

  • Newcomb JD, Ajmo CT, Davis Sanberg C, Sanberg PR, Pennypacker KR et al (2006) Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant 15:213–223

    Article  PubMed  Google Scholar 

  • Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR (2005) Stroke induced migration of human umbilical cord blood: time course and cytokines. Stem Cells Dev 14:576–586

    Article  PubMed  CAS  Google Scholar 

  • Nishino H, Borlongan CV (2000) Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res 127:461–476

    Article  PubMed  CAS  Google Scholar 

  • Nishino H, Aihara N, Czurko A, Hashitani T, Isobe Y et al (1993a) Reconstruction of GABAergic transmission and behavior by striatal cell grafts in rats with ischemic infarcts in the middle cerebral artery. J Neural Transplant Plast 4:147–155

    Article  PubMed  CAS  Google Scholar 

  • Nishino H, Koide K, Aihara N, Kumazaki M, Sakurai T et al (1993b) Striatal grafts in the ischemic striatum improve pallidal GABA release and passive avoidance. Brain Res Bull 32:517–520

    Article  PubMed  CAS  Google Scholar 

  • Nodari LR, Ferrari D, Giani F, Bossi M, Rodriguez-Menendez V et al (2010) Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5:e14035

    Article  Google Scholar 

  • Nystedt J, Makinen S, Laine J, Jolkkonen J (2006) Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol Exp 66:293–300

    Google Scholar 

  • Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL et al (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci USA 105:14638–14643

    Article  PubMed  CAS  Google Scholar 

  • Onizuka K, Fukuda A, Kunimatsu M, Kumazaki M, Sasaki M et al (1996) Early cytopathic features in rat ischemia model and reconstruction by neural graft. Exp Neurol 137:324–332

    Article  PubMed  CAS  Google Scholar 

  • Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X et al (2010) Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke 41:2064–2070

    Article  PubMed  Google Scholar 

  • Pimentel-Coelho PM, Magalhães ES, Lopes LM, DeAzevedo LC, Santiago MF et al (2010) Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 19:351–358

    Article  PubMed  Google Scholar 

  • Pleasure SJ, Page C, Lee VM (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12:1802–1815

    PubMed  CAS  Google Scholar 

  • Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr et al (2011) Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 70:59–69

    Article  PubMed  Google Scholar 

  • Seyed Jafari SS, Ali Aghaei A, Asadi-Shekaari M, Nematollahi-Mahani SN, Sheibani V (2011) Investigating the effects of adult neural stem cell transplantation by lumbar puncture in transient cerebral ischemia. Neurosci Lett 495:1–5

    Article  PubMed  CAS  Google Scholar 

  • Shen LH, Li Y, Chen J, Zhang J, Vanguri P et al (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137:393–399

    Article  PubMed  CAS  Google Scholar 

  • Shen CC, Lin CH, Yang YC, Chiao MT, Cheng WY et al (2010) Intravenous implanted neural stem cells migrate to injury site, reduce infarct volume, and improve behavior after cerebral ischemia. Curr Neurovasc Res 7:167–179

    Article  PubMed  Google Scholar 

  • Shichinohe H, Kuroda S, Sugiyama T, Ito M, Kawabori M (2010) Bone marrow stromal cell transplantation attenuates cognitive dysfunction due to chronic cerebral ischemia in rats. Dement Geriatr Cogn Disord 30:293–301

    Article  PubMed  Google Scholar 

  • Stilley CS, Ryan CM, Kondziolka D, Bender A, DeCesare S et al (2004) Changes in cognitive function after neuronal cell transplantation for basal ganglia stroke. Neurology 63:1320–1322

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Zhang H, Li J, Huang H, Cheng H et al (2010) Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke. J Transl Med 8:77

    Article  PubMed  Google Scholar 

  • Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H et al (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    PubMed  CAS  Google Scholar 

  • Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W et al (1984) Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J Cell Sci 72:37–64

    PubMed  CAS  Google Scholar 

  • Toda H, Takahashi J, Iwakami N, Kimura T, Hoki S et al (2001) Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 316:9–12

    Article  PubMed  CAS  Google Scholar 

  • Tonder N, Sorensen T, Zimmer J, Jorgensen MB, Johansen FF et al (1989) Neural grafting to ischemic lesions of the adult rat hippocampus. Exp Brain Res 74:512–526

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Mantione JR, Lee JH, Seid DP, You T et al (1993) Neurons derived from a human teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp Neurol 122:283–294

    Article  PubMed  CAS  Google Scholar 

  • Vendrame M, Cassady CJ, Newcomb J, Butler T, Pennypacker KR et al (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35:2390–2395

    Article  PubMed  Google Scholar 

  • Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC et al (2005) Anti-inflammatory effects of human cord blood cells in a Rat model of stroke. Stem Cells Dev 14:595–604

    Article  PubMed  CAS  Google Scholar 

  • Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C et al (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199:191–200

    Article  PubMed  CAS  Google Scholar 

  • Willing AE, Lixian J, Milliken M, Poulos S, Zigova T et al (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73:296–307

    Article  PubMed  CAS  Google Scholar 

  • Zeng J, Zhao LR, Nordborg C, Mattsson B, Johansson BB (1999) Are neuronal markers and neocortical graft-host interface influenced by housing conditions in rats with cortical infarct cavity? Brain Res Bull 48:165–171

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Jiang Q, Zhang R, Zhang L, Wang L et al (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison E. Willing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Willing, A.E., Shahaduzzaman, M. (2013). Delivery Routes for Cell Therapy in Stroke. In: Jolkkonen, J., Walczak, P. (eds) Cell-Based Therapies in Stroke. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1175-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1175-8_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1174-1

  • Online ISBN: 978-3-7091-1175-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics