Skip to main content

Advertisement

Log in

The Effect of Human Umbilical Cord Blood Cells on Survival and Cytokine Production by Post-Ischemic Astrocytes in Vitro

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cerebral ischemia induces death of all neural cell types within the region affected by the loss of blood flow. We have shown that administering human umbilical cord blood cells after a middle cerebral artery occlusion in rats significantly reduces infarct size, presumably by rescuing cells within the penumbra. In this study we examined whether the cord blood cells enhanced astrocyte survival in an in vitro model of hypoxia with reduced glucose availability. Primary astrocyte cultures were incubated for 2 h in no oxygen (95% N, 5% CO2) and low glucose (1% compared to 4.5%) media. Cord blood mononuclear cells were added to half the cultures at the beginning of hypoxia. Astrocyte viability was determined using fluorescein diacetate/propidium iodide (FDA/PI) labeling and cytokine production by the astrocytes measured using ELISA. In some studies, T cells, B cells or monocytes/macrophages isolated from the cord blood mononuclear fraction with magnetic antibody cell sorting (MACS) were used instead to determine which cellular component of the cord blood mononuclear fraction was responsible for the observed effects. Co-culturing mononuclear cord blood cells with astrocytes during hypoxia stimulated production of IL-6 and IL-10 during hypoxia. The cord blood T cells decreased survival of the astrocytes after hypoxia but had no effect on the examined cytokines. Our data demonstrate that the tested cord blood fractions do not enhance astrocyte survival when delivered individually, suggesting there is either another cellular component that is neuroprotective or an interaction of all the cells is essential for protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Newcomb, J. D., Ajmo, C. T., Davis Sanberg, C., Sanberg, P. R., Pennypacker, K. R., & Willing, A. E. (2006). Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplantation, 15, 213–223.

    Article  PubMed  Google Scholar 

  2. Vendrame, M., Cassady, C. J., Newcomb, J., et al. (2004). Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke, 35, 2390–2395.

    Article  PubMed  Google Scholar 

  3. Willing, A. E., Lixian, J., Milliken, M., et al. (2003). Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. Journal of Neuroscience Research, 73, 296–307.

    Article  CAS  PubMed  Google Scholar 

  4. Borlongan, C. V., Hadman, M., Davis Sanberg, C., & Sanberg, P. R. (2004). CNS entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke, 35, 2385–2389.

    Article  PubMed  Google Scholar 

  5. Vendrame, M., Gemma, C., de Mesquita, D., et al. (2005). Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells and Development, 14, 595–604.

    Article  CAS  PubMed  Google Scholar 

  6. Hall, A. A., Leonardo, C. C., Collier, L. A., Rowe, D. D., Willing, A. E., & Pennypacker, K. R. (2009). Delayed treatments for stroke influence neuronal death in rat organotypic slice cultures subjected to oxygen glucose deprivation. Neuroscience, 164, 470–477.

    Article  CAS  PubMed  Google Scholar 

  7. Hall, A., Guyer, A., Leonardo, C., et al. (2009). Umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. Journal of Neuroscience Research, 87, 333–341.

    Article  CAS  PubMed  Google Scholar 

  8. Bracci-Laudiero, L., Celestino, D., Starace, G., et al. (2003). CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. Journal of Neuroimmunology, 136, 130–139.

    Article  CAS  PubMed  Google Scholar 

  9. Arien-Zakay, H., Lecht, S., Bercu, M. M., et al. (2009). Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Experimental Neurology, 216, 83–94.

    Article  CAS  PubMed  Google Scholar 

  10. Fan, C.-G., Zhang, Q.-J., Tang, F.-W., Han, Z.-B., Wang, G.-S., & Han, Z.-C. (2005). Human umbilical cord blood cells express neurotrophic factors. Neuroscience Letters, 380, 322–325.

    Article  CAS  PubMed  Google Scholar 

  11. Zwart, I., Hill, A. J., Al-Allaf, F., et al. (2009). Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Experimental Neurology, 216, 439–448.

    Article  PubMed  Google Scholar 

  12. Neuhoff, S., Moers, J., Rieks, M., et al. (2007). Proliferation, differentiation, and cytokine secretion of human umbilical cord blood–derived mononuclear cells in vitro. Experimental Hematology, 35, 1119–1131.

    Article  CAS  PubMed  Google Scholar 

  13. McGuckin, C. P., Forraz, N., Allouard, Q., & Pettengell, R. (2004). Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Experimental Cell Research, 295, 350–359.

    Article  CAS  PubMed  Google Scholar 

  14. Hau, S., Reich, D. M., Scholz, M., et al. (2008). Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neuroscience, 9, 30.

    Article  PubMed  Google Scholar 

  15. Jiang, L., Womble, T., Saporta, S., et al. (2010). Human umbilical cord blood cells depress the microglial inflammatory response in vitro. Stem Cells and Development, 19, 221–227.

    Article  CAS  PubMed  Google Scholar 

  16. Ehrlich, L. C., Peterson, P. K., & Hu, S. (1999). Interleukin (IL)-1beta-mediated apoptosis of human astrocytes. NeuroReport, 10, 1849–1852.

    Article  CAS  PubMed  Google Scholar 

  17. Suk, K., Lee, J., Hur, J., et al. (2001). Activation-induced cell death of rat astrocytes. Brain Research, 900, 342–347.

    Article  CAS  PubMed  Google Scholar 

  18. Niu, F., Zhang, X., Chang, L., et al. (2009). Trichostatin A enhances OGD-astrocyte viability by inhibiting inflammatory reaction mediated by NF-κB. Brain Research Bulletin, 78, 342–346.

    Article  CAS  PubMed  Google Scholar 

  19. Schultz, C., Reiss, I., Bucsky, P., et al. (2000). Maturational changes of lymphocyte surface antigens in human blood: comparison between fetuses, neonates and adults. Biology of the Neonate, 78, 77–82.

    Article  CAS  PubMed  Google Scholar 

  20. Harris, D. P., Haynes, L., Sayles, P. C., et al. (2000). Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunology, 1, 475–482.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, P., Wang, Y., Chin, R. K., et al. (2002). B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. Journal of Immunology, 168, 5117–5123.

    CAS  Google Scholar 

  22. Fogelstrand, L., Hulthe, J., Hulten, L. M., Wiklund, O., & Fagerberg, B. (2004). Monocytic expression of CD14 and CD18, circulating adhesion molecules and inflammatory markers in women with diabetes mellitus and impaired glucose tolerance. Diabetologia, 47, 1948–1952.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, D. C., Schmalstieg, F. C., Kohl, S., et al. (1984). Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of a high molecular weight surface glycoprotein (gp138): common relationship to diminished cell adherence. The Journal of Clinical Investigation, 74, 536–551.

    Article  CAS  PubMed  Google Scholar 

  24. Kaufman, D., Kilpatrick, L., Hudson, R. G., et al. (1999). Decreased superoxide production, degranulation, tumor necrosis factor alpha secretion, and CD11b/CD18 receptor expression by adherent monocytes from preterm infants. Clinical and Diagnostic Laboratory Immunology, 6, 525–529.

    CAS  PubMed  Google Scholar 

  25. Jiang, Q., Azuma, E., Hirayama, M., et al. (2001). Functional immaturity of cord blood monocytes as detected by impaired response to hepatocyte growth factor. Pediatrics International, 43, 334–339.

    Article  CAS  PubMed  Google Scholar 

  26. Pranke, P., Failace, R. R., Allebrandt, W. F., Steibel, G., Schmidt, F., & Nardi, N. B. (2001). Hematologic and immunophenotypic characterization of human umbilical cord blood. Acta Haematologica, 105, 71–76.

    Article  CAS  PubMed  Google Scholar 

  27. Rainsford, E., & Reen, D. J. (2002). Interleukin 10, produced in abundance by human newborn t cells, may be the regulator of increased tolerance associated with cord blood stem cell transplantation. British Journal Haematology, 116, 702–709.

    Article  CAS  Google Scholar 

  28. Juretic, E., Gagro, A., Vukelic, V., & Petrovecki, M. (2004). Maternal and neonatal lymphocyte subpopulations at delivery and 3 days postpartum: Increased coexpression of cd45 isoforms. American Journal of Reproductive Immunology, 52, 1–7.

    Article  PubMed  Google Scholar 

  29. De Paoli, P., Battistin, S., & Santini, G. F. (1988). Age-related changes in human lymphocyte subsets: progressive reduction of the CD4 CD45r (suppressor inducer) population. Clinical Immunology and Immunopathology, 48, 290–296.

    Article  PubMed  Google Scholar 

  30. Xia, D., Hao, S., & Xiang, J. (2006). CD8+ cytotoxic T-APC stimulate central memory CD8+ T cell responses via acquired peptide-mhc class I complexes and CD80 costimulation, and IL-2 secretion. Journal of Immunology, 177, 2976–2984.

    CAS  Google Scholar 

  31. Hombach, A., Kohler, H., Rappl, G., & Abken, H. (2006). Human CD4+ T cells lyse target cells via granzyme/perforin upon circumvention of mhc class ii restriction by an antibody-like immunoreceptor. Journal of Immunology, 177, 5668–5675.

    CAS  Google Scholar 

  32. Diamond, A. S., & Gill, R. G. (2000). An essential contribution by IFN-gamma to CD8+ T cell-mediated rejection of pancreatic islet allografts. Journal of Immunology, 165, 247–255.

    CAS  Google Scholar 

  33. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., & Lusso, P. (1995). Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV- suppressive factors produced by CD8+ T cells. Science, 270, 1811–1815.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, J. J., Nottingham, L. K., & Sin, J. I. (1998). CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. The Journal of Clinical Investigation, 102, 1112–1124.

    Article  CAS  PubMed  Google Scholar 

  35. Zigova, T., Willing, A. E., Saporta, S., et al. (2001). Apoptosis in cultured hNT neurons. Developmental Brain Research, 127, 63–70.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y., & Swanson, R. A. (2003). Astrocytes and brain injury. Journal of Cerebral Blood Flow and Metabolism, 23, 137–149.

    PubMed  Google Scholar 

  37. Gao, Q., Li, Y., & Chopp, M. (2005). Bone marrow stromal cells increase astrocyte survival via upregulation of phosphinoside 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult. Neuroscience, 136, 123–134.

    Article  CAS  PubMed  Google Scholar 

  38. Benavides, A., Pastor, D., Santos, P., Tranque, P. A., & Calvo, S. (2005). CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation. Glia, 52, 261–275.

    Article  PubMed  Google Scholar 

  39. Schobitz, B., De Kloet, E. R., & Holsboer, F. (1994). Gene expression and function of interleukin 1, interleukin 6 and tumor necrosis factor in the brain. Progress in Neurobiology, 44, 397–432.

    Article  CAS  PubMed  Google Scholar 

  40. Colasanti, M., Ramacci, M. T., Foresta, P., & Lauro, G. M. (1991). Different in vitro response to rIL-1 beta of newborn and adult rat astroglia. International Journal of Developmental Neuroscience, 9, 501–507.

    Article  CAS  PubMed  Google Scholar 

  41. Goswami, S., Gupta, A., & Sharma, S. K. (1998). Interleukin-6-mediated autocrine growth promotion in human glioblastoma multiforme cell line U87MG. Journal of Neurochemistry, 71, 1837–1845.

    Article  CAS  PubMed  Google Scholar 

  42. Hama, T., Kushima, Y., Miyamoto, M., Kubota, M., Takei, N., & Hatanaka, H. (1991). Interleukin-6 improves the survival of mesencephalic catecholaminergic and septal cholinergic neurons from postnatal, two-week-old rats in cultures. Neuroscience, 40, 445–452.

    Article  CAS  PubMed  Google Scholar 

  43. Yamada, M., & Hatanaka, H. (1994). Interleukin-6 protects cultured rat hippocampal neurons against glutamate-induced cell death. Brain Research, 643, 173–180.

    Article  CAS  PubMed  Google Scholar 

  44. Campbell, I. L., Abraham, C. R., Masliah, E., et al. (1993). Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proceedings of the National Academy of Sciences of the United States of America, 90, 10061–10065.

    Article  CAS  PubMed  Google Scholar 

  45. Heyser, C. J., Masliah, E., Samimi, A., Campbell, I. L., & Gold, L. H. (1997). Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proceedings of the National Academy of Sciences of the United States of America, 94, 1500–1505.

    Article  CAS  PubMed  Google Scholar 

  46. Penkowa, M., Molinero, A., Carrasco, J., & Hidalgo, J. (2001). Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience Letters, 102, 805–818.

    CAS  Google Scholar 

  47. Kotake, Y., Sang, H., Tabatabaie, T., Wallis, G. L., Moore, D. R., & Stewart, C. A. (2002). Interleukin-10 overexpression mediates phenyl-n-tert-butyl nitrone protection from endotoxemia. Shock, 17, 210–216.

    Article  PubMed  Google Scholar 

  48. Dokka, S., Shi, X., Leonard, S., Wang, L., Castranova, V., & Rojanasakul, Y. (2001). Interleukin-10-mediated inhibition of free radical generation in macrophages. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, L1196–L1202.

    CAS  PubMed  Google Scholar 

  49. Spera, P. A., Ellison, J. A., & Feuerstein, G. Z. (1998). IL-10 reduces rat brain injury following focal stroke. Neuroscience Letters, 251, 189–192.

    Article  CAS  PubMed  Google Scholar 

  50. Fuchs, A. C., Granowitz, E. V., Shapiro, L., et al. (1996). Clinical, hematologic and immunologic effects of interleukin-10 in humans. Journal of Clinical Immunology, 16, 291–303.

    Article  CAS  PubMed  Google Scholar 

  51. Davies, C. A., Loddick, S. A., Toulmond, S., Stroemer, R. P., Hunt, J., & Rothwell, N. J. (1999). The progression and topographic distribution of interleukin-1beta expression after permanent middle cerebral artery occlusion in the rat. Journal of Cerebral Blood Flow and Metabolism, 19, 87–98.

    CAS  PubMed  Google Scholar 

  52. Lee, S. C., Liu, W., Dickson, D. W., Brosnan, C. F., & Berman, J. W. (1993). Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. Journal of Immunology, 150, 2659–2667.

    CAS  Google Scholar 

  53. Tomozawa, Y., Inoue, T., & Satoh, M. (1995). Expression of type I interleukin-1 receptor mRNA and its regulation in cultured astrocytes. Neuroscience Letters, 195, 57–60.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, M., Hurn, P. D., Roselli, C. E., & Alkayed, N. J. (2007). Role of p450 aromatase in sex-specific astrocytic cell death. Journal of Cerebral Blood Flow and Metabolism, 27, 135–141.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded in part by the American Heart Association (AEW, grants 0355183B & 0555266B) and the National Institutes of Health (AEW, R01 NS052839).

Conflict of Interest

Human umbilical cord blood cells were provided by Saneron CCEL Therapeutics, Inc. SS and AEW were consultants to Saneron CCEL Therapeutics, Inc. PRS is co-founder of Saneron CCEL Therapeutics, Inc. AEW and PRS are inventors on cord-blood related patents. CDS is Vice President for Research at Saneron CCEL Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Willing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Saporta, S., Chen, N. et al. The Effect of Human Umbilical Cord Blood Cells on Survival and Cytokine Production by Post-Ischemic Astrocytes in Vitro. Stem Cell Rev and Rep 6, 523–531 (2010). https://doi.org/10.1007/s12015-010-9174-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9174-x

Keywords

Navigation