Skip to main content

Bioremediation: A Natural Method for the Management of Polluted Environment

  • Chapter
  • First Online:
Toxicity of Heavy Metals to Legumes and Bioremediation

Abstract

Heavy metal contamination resulting from rapid industrialization and other sources is a growing problem worldwide. Increasing pollution of soils with heavy metals disturbs the microbial biodiversity, soil fertility, and plant production and may cause significant human health problems. The excessive accumulation of heavy metals within plant tissues can modify protein structure or replace an essential element causing chlorosis, growth impairment, browning of roots, and photosystems dysfunction. To circumvent metal toxicity, bioremediation, a process that involves the use of biological materials to detoxify the contaminated sites and brings the environment to its contaminant free (original) state, has emerged as a promising alternative to widely practiced physicochemical methods used to clean up contaminated lands. Biological materials used to remediate contaminated sites are inexpensive, are easy to operate, do not produce hazardous by-products, and can be effective even if metals are present in low concentrations. Here, we integrate the knowledge obtained so far on the removal of metals and metalloids employing bioremediation strategies for contaminated soils. The information regarding different types of bioremediation and the challenges facing bioremediation are highlighted. The role and impacts of plant-growth-promoting rhizobacteria on bioremediation efficiency are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI (2011) Bioremediation: new approaches and trends. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils, vol 20, Environmental pollution. Springer, Dordrecht

    Chapter  Google Scholar 

  • Ahemad M, Khan MS (2009) Effects of quizalafop-p-ethyl and clodinafop on plant growth promoting activities of rhizobacteria from mustard rhizosphere. Ann Plant Prot Sci 17:175–180

    Google Scholar 

  • Ahemad M, Khan MS (2010a) Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    Article  PubMed  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Insecticide-tolerant and plant-growth promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67:423–429

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011a) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol J 1:54–64

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011b) Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea-Rhizobium symbiosis. Sci Hortic 129:266–272

    Article  CAS  Google Scholar 

  • Ahmad MSA, Hussain M, Ijaz S, Alvi AK (2008) Photosynthetic performance of two mungbean (Vigna radiata (L.) wilczek) cultivars under cadmium and lead stress. Int J Agric Biol 10:167–172

    CAS  Google Scholar 

  • Antony R, Sujith PP, Sheryl OF, Pankaj V, Khedekar VD, Loka Bharathi PA (2011) Cobalt immobilization by manganese oxidizing bacteria from Indian Ridge System. Curr Microbiol 62:840–849

    Article  PubMed  CAS  Google Scholar 

  • Babu NG, Phaninatha AS, Idress HA, Murthy SDS (2010) Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the cyanobacterium, Spirulina platensis. Acad J Plant Sci 3:46–49

    Google Scholar 

  • Bahadir T, Bakan G, Altas L, Buyukgungor H (2007) The investigation of lead removal by biosorption: an application at storage battery industry wastewaters. Enzyme Microb Technol 41:98–102

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, Toronto, ON, p 303

    Google Scholar 

  • Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640

    Article  CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant-growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon GD, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Cardón DL, Villafán SM, Tovar AR, Jiménez SP, Zúñiga LAG, Allieri MAA, Pérez NO, Dorantes AR (2010) Growth response and heavy metals tolerance of Axonopus affinis, inoculated with plant growth promoting rhizobacteria. Afr J Biotechnol 9:8772–8782

    Google Scholar 

  • Cetin SC, Karaca A, Kizilkaya R, Turgay QC (2011) Role of plant growth promoting bacteria and fungi in heavy metal detoxification. In: Sherameti I, Verma A (eds) Detoxification of heavy metals, vol 30, Soil biology. Springer, Berlin, pp 369–388

    Chapter  Google Scholar 

  • Chang JS, Huang JC (1998) Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass. Biotechnol Prog 14:735–741

    Article  PubMed  CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces 46:101–107

    Article  PubMed  CAS  Google Scholar 

  • Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. A state-of-the-art report with special reference to literature published in Chinese journals. Environ Sci Pollut Res Int 10:256–264

    Article  PubMed  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegradation 59:8–15

    Article  CAS  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan R (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Denton B (2007) Advances of phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Basic Biotechnol 3:1–5

    Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    Article  PubMed  CAS  Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    Article  PubMed  CAS  Google Scholar 

  • Ebbs S, Uchil S (2008) Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica 46:49–55

    Article  CAS  Google Scholar 

  • El Aafi N, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytoremediation 14:261–274

    Article  CAS  Google Scholar 

  • El-Syed OH, Refaat HM, Swellam MA, Amer MM, Attwa AI, El-Awady ME (2011) Bioremediation of zinc by Streptomyces aureofacienes. J Appl Sci 11:873–877

    Article  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    Article  PubMed  CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  • Gadd GM (1990) Metal tolerance. In: Edwards C (ed) Microbes of extreme environments. Open University Press, Britain, p 210

    Google Scholar 

  • Gorhe V, Paszkowski U (2006) Contribution of arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  Google Scholar 

  • Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57:312–317

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M (2004) Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256

    Article  PubMed  CAS  Google Scholar 

  • Huq SMI, Abdullah MB, Joardar JC (2007) Bioremediation of arsenic toxicity by algae in rice culture. Land Contam Reclamat 15:327–333

    Article  Google Scholar 

  • Jayabarath J, Shyam SS, Arulmurugan R, Giridhar R (2009) Bioremediation of heavy metals using biosurfactants. Int J Biotechnol Appl 1:50–54

    Google Scholar 

  • Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. Mosselii. World J Microbiol Biotechnol 25:573–581

    Article  CAS  Google Scholar 

  • Johnson KJ, Ams DA, Wedel AN, Szymanowski JES, Weber DL, Schneegurt MA, Fein JB (2007) The impact of metabolic state on Cd adsorption onto bacterial cells. Geobiology 5:211–218

    Article  CAS  Google Scholar 

  • Joseph B, Ranjan Patra R, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152

    Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320

    Article  PubMed  CAS  Google Scholar 

  • Khan AG (2004) Mycotrophy and its significance in wetland ecology and wetland management. In: Wong MH (ed) Developments in ecosystems, vol 1. Elsevier, Northhampton, pp 97–114

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Khan S, Ael-L H, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res Int 17:288–296

    Google Scholar 

  • Kille P, Winge DR, Harwood JL, Kay J (1991) A plant metallothionein produced in E. coli. FEBS Lett 295:171–175

    Article  PubMed  CAS  Google Scholar 

  • Kotrba P, Pospisil P, Lorenzo VD, Ruml T (1999) Enhanced metallosorption of Escherichia coli cells due to surface display of beta- and alpha-domains of mammalian metallothionein as a fusion to Lamb protein. J Recept Signal Transduct Res 19:703–715

    Article  PubMed  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Sinha VK, Srivastava A, Singh VP (2011) Zinc alleviates cadmium induced toxicity in Vigna radiata (L.) Wilczek. J Phytol 3:43–46

    CAS  Google Scholar 

  • Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioeng 95:399–403

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR (2002) Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiol Today 29:67–69

    Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Magnuson TS, Hodges-Myerson AL, Lovley DR (2000) Characterization of a membrane-bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+ reducing bacterium Geobacter sulfurreducens. FEMS Microbiol Lett 185:205–211

    Article  PubMed  CAS  Google Scholar 

  • Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 39:451–462

    Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class II metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed  CAS  Google Scholar 

  • Mamaril JC, Paner ET, Alpante BM (1997) Biosorption and desorption studies of chromium (iii) by free and immobilized Rhizobium (BJVr 12) cell biomass. Biodegradation 8:275–285

    Article  CAS  Google Scholar 

  • Marchand L, Mench M, Jacob D, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP (1987) Long term studies of metal transfers following application of sewage sludge. In: Coughtrey JP, Martin MH, Unsworth MH (eds) Pollutant transport and fate in ecosystems, British Ecological Society Special Publication No. 6. Blackwell, Oxford, pp 301–307

    Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16:162–175

    Article  PubMed  CAS  Google Scholar 

  • Mirzaei A, Vazan S, Naseri R (2010) Response of yield and yield components of safflower (Carthamus tinctorius L.) to seed inoculation with Azotobacter and Azospirillum and different nitrogen levels under dry land conditions. World Appl Sci J 11:1287–1291

    Google Scholar 

  • Morita A, Yokota H, Ishka MR, Ghanati F (2006) Changes in peroxidise activity and lignin content of cultured tea cells in response to excess manganese. Soil Sci Plant Nutr 52:26–31

    Article  CAS  Google Scholar 

  • Muller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

    Chapter  Google Scholar 

  • Naz I, Bano A, Tamoor-Ul-Hassan (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:5762–5766

    CAS  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3:263–265

    Article  PubMed  Google Scholar 

  • Pan R, Cao L, Zhang R (2009) Combined effects of Cu, Cd, Pb and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J Hazard Mater 171:761–766

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  PubMed  CAS  Google Scholar 

  • Roy BK, Prasad R, Gunjan (2010) Heavy metal accumulation and changes in metabolic parameters in Cajanas cajan grown in mine spoil. J Environ Biol 31:567–573

    PubMed  CAS  Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 3:e2073. doi:10.1371/journal.pone.0002073

    Article  PubMed  Google Scholar 

  • Salt D, Rauser W (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Sar P, Kazy SK, Singh SP (2001) Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol 32:257–261

    Article  PubMed  CAS  Google Scholar 

  • Saraswat S, Rai JPN (2011) Prospective application of Leucaena Leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils. Int J Phytoremediation 13:271–288

    Article  PubMed  CAS  Google Scholar 

  • Shukla OP, Rai UN, Dubey S (2009) Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Bioresour Technol 100:2198–2203

    Article  PubMed  CAS  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ting ASY, Choong CC (2009) Bioaccumulation and biosorption efficacy of Trichoderma isolate SP2F1 in removing copper Cu(II) from aqueous solutions. World J Microbiol Biotechnol 25:1431–1437

    Article  CAS  Google Scholar 

  • Unyayer S, Celik A, Celik FO, Gozel A (2006) Cadmium induced genotoxicity, cytotoxicity and lipid peroxidation in Allium stivum and Vicia faba. Mutagenesis 21:77–81

    Article  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164

    Article  PubMed  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2006) An evaluation of the effects of heavy metals on the growth, seed yield and grain protein of lentil in pots. Ann Appl Biol (Suppl TAC) 27:23–24

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Exp Agric 47:712–720

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Whiting SN, De Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyper accumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  PubMed  CAS  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    Article  PubMed  CAS  Google Scholar 

  • Yancheshmeh JB, Khavazi K, Pazira E, Solhi M (2011) Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium and lead uptake by canola and barley. Afr J Microbiol Res 5:1747–1754

    CAS  Google Scholar 

  • Yurela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  Google Scholar 

  • Zaidi A, Oves M, Ahmad E, Khan MS (2011) Importance of free-living fungi in heavy metal remediation. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils, Environmental pollution 20. Springer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almas Zaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Zaidi, A., Wani, P.A., Khan, M.S. (2012). Bioremediation: A Natural Method for the Management of Polluted Environment. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_6

Download citation

Publish with us

Policies and ethics