Skip to main content

Plant Water Relations in Alpine Winter

  • Chapter
  • First Online:
Plants in Alpine Regions

Abstract

Plants in alpine ecosystems are trans exposed not only to overall extreme climatic conditions but also to an enormous spatial and temporal variability in environmental factors. Water relations, as a central physiological aspect of plant life, are adjusted to this environment and mirror its extraordinary heterogeneity. In temperate mountains, plants also have to overcome pronounced contrasts between the hydraulic situation in summer and winter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate species. Funct Ecol 21:211–218

    Article  Google Scholar 

  • Anfodillo T, Rento S, Carraro V, Furlanetto L, Urbinati C, Carrer M (1998) Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies (L.) Karst. and Pinus cembra L. Ann For Sci 55:159–172

    Article  Google Scholar 

  • Anfodillo T, DiBisceglie DP, Urso T (2002) Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps). Tree Physiol 22:479–487

    PubMed  Google Scholar 

  • Aulitzky H (1961) Die Bodentemperaturen in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald, vol 59. Mitteilungen der Forstlichen Bundesversuchsanstalt, Mariabrunn, pp 153–208

    Google Scholar 

  • Badalotti A, Anfodillo T, Grace J (2000) Evidence of osmoregulation in Larix decidua at Alpine treeline and comparative responses to water availability of two co-occurring evergreen species. Ann For Sci 57:623–633

    Article  Google Scholar 

  • Baig MN, Tranquillini W (1976) Studies on upper timberline: morphology and anatomy of Norway spruce (Picea abies) and stone pine (Pinus cembra) needles from various habitat conditions. Can J Bot 54:1622–1632

    Article  Google Scholar 

  • Baig MN, Tranquillini W, Havranek WM (1974) Cuticuläre Transpiration von Picea abies und Pinus cembra- Zweigen auf verschiedener Seehöhe und ihre Bedeutung für die winterliche Austrocknung der Bäume an der alpinen Waldgrenze. Centralblatt für das Gesamte Forstwesen 4:195–211

    Google Scholar 

  • Bauer H, Nagele M, Comploj M, Galler V, Mair M, Unterpertinger E (1994) Photosynthesis in cold acclimated leaves of plants with various degrees of frost tolerance. Physiol Plant 91:403–412

    Article  CAS  Google Scholar 

  • Boyce RL, Lucero SA (1999) Role of roots in winter water relations of Engelmann spruce saplings. Tree Physiol 19:893–898

    PubMed  Google Scholar 

  • Boyce RL, Saunders GP (2000) Dependence of winter water relations of mature high-elevation Picea engelmannii and Abies lasiocarpa on summer climate. Tree Physiol 20:1077–1086

    PubMed  CAS  Google Scholar 

  • Christersson L (1972) The transpiration rate of unhardened, hardened and dehardened seedlings of spruce and pine. Physiol Plant 26:258–263

    Google Scholar 

  • Christmann A, Havranek WM, Wieser G (1999) Seasonal variation of abscisic acid in needles of Pinus cembra L. at the alpine timberline and possible relations to frost resistance and water status. Phyton 39:23–30

    CAS  Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    PubMed  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    Article  PubMed  CAS  Google Scholar 

  • Giger T, Leuschner C (2004) Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 199:100–109

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2001) Effects of altitude on tracheid differentiation and lignification of Norway spruce. Can J Bot 79:815–821

    Google Scholar 

  • Goldstein GH, Brubaker LB, Hinckley TM (1985) Water relations of white spruce (Picea glauca (Moench) Voss) at tree line in north central Alaska. Can J For Res 15:1080–1087

    Article  Google Scholar 

  • Groß M, Rainer I, Tranquillini W (1991) Über die Frostresistenz der Fichte mit besonderer Berücksichtigung der Zahl der Gefrierzyklen und der Geschwindigkeit der Temperaturänderung beim Frieren und Auftauen. Forstwissenschaftliches Centralblatt 110:207–217

    Article  Google Scholar 

  • Günthardt MS, Wanner H (1982) Veränderungen der Spaltöffnungen und der Wachsstruktur mit zunehmendem Nadelalter bei Pinus cembra L. und Picea abies (L.) Karsten an der Waldgrenze. Bot Helvet 92:47–60

    Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schäfer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505

    Article  Google Scholar 

  • Hadley JL, Smith WK (1983) Influence of wind exposure on needle desiccation and mortality for timberline conifers in Wyoming, U.S.A. Arct Alp Res 15:127–135

    Article  Google Scholar 

  • Hadley JL, Smith WK (1986) Wind effects on needles of timberline conifers: seasonal influence on mortality. Ecology 67:12–19

    Article  Google Scholar 

  • Hadley JL, Smith WK (1989) Wind erosion of leaf surface wax in timberline conifers. Arct Alp Res 21:392–398

    Article  Google Scholar 

  • Häsler R, Streule A, Turner H (1999) Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine treeline. Phyton 39:47–52

    Google Scholar 

  • Havranek WM (1972) Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und die Stoffproduktion an der Waldgrenze. Angew Bot 46:101–116

    Google Scholar 

  • Holbrook MN (1995) Stem water storage. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic, New York

    Google Scholar 

  • Holzer K (1959) Winterliche Schäden an Zirben nahe der alpinen Baumgrenze. Centralblatt für das Gesamte Forstwesen 76:232–244

    Google Scholar 

  • Katz C, Oren R, Schulze E-D, Milburn JA (1989) Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees 3:33–37

    Article  Google Scholar 

  • Kavanagh KL, Bond BJ, Aitken SN, Gartner BL, Knowe S (1999) Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol 19:31–37

    PubMed  Google Scholar 

  • Kikuta S, Richter H (2003) Ultrasound acoustic emissions from freezing xylem. Plant Cell Environ 26:383–388

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Berlin, Heidelberg

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69:577–588

    Article  Google Scholar 

  • Larcher W (1957) Frosttrocknis an der Waldgrenze und in der alpinen Zwergstrauchheide auf dem Patscherkofel bei Innsbruck. Veröff Ferdinandeum Innsbruck 37:49–81

    Google Scholar 

  • Larcher W (1963) Zur spätwinterlichen Erschwerung der Wasserbilanz von Holzpflanzen an der Waldgrenze. Berichte des naturwissenschaftlich medizinischen Vereins Innsbruck 53:125–137

    Google Scholar 

  • Larcher W (1972) Der Wasserhaushalt immergrüner Pflanzen im Winter. Berichte der Deutschen Botanischen Gesellschaft 85:315–327

    Google Scholar 

  • Martinez-Vilalta J, Sala A, Pinol J (2004) The hydraulic architecture of pinaceae – a review. Plant Ecol 171:3–13

    Article  Google Scholar 

  • Mattes H (1982) Die Lebensgemeinschaft von Tannenhäher und Arve, vol 241. Eidgenössische Anstalt für Forstliches Versuchswesen, Berlin, pp 1–74

    Google Scholar 

  • Mayr S (2007) Limits in water relations. In: Wieser G, Tausz M (eds) Trees at their upper limit. Treelife limitation at the alpine timberline. Springer, Berlin, pp 145–162

    Google Scholar 

  • Mayr S, Charra-Vaskou K (2007) Winter at the alpine timberline causes complex within-tree patterns of water potential and embolism in Picea abies. Physiol Plant 131:131–139

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Sperry JS (2010) Freeze-thaw induced embolism in Pinus contorta: centrifuge experiments validate the “thaw-expansion hypothesis” but conflict with ultrasonic emission data. New Phytol 185:1016–1024

    Article  PubMed  Google Scholar 

  • Mayr S, Zublasing V (2010) Ultrasonic emissions from conifer xylem exposed to repeated freezing. J Plant Physiol 167:34–40

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the alpine timberline. Physiol Plant 115:74–80

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Gruber A, Bauer H (2003a) Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217:436–441

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Gruber A, Schwienbacher F, Dämon B (2003b) Winter-embolism in a "Krummholz"-shrub (Pinus mugo) growing at the alpine timberline. Aust J For Sci 120:29–38

    Google Scholar 

  • Mayr S, Schwienbacher F, Bauer H (2003c) Winter at the alpine timberline: why does embolism occur in Norway spruce but not in stone pine? Plant Physiol 131:780–792

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006a) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology 87:3175–3185

    Article  PubMed  Google Scholar 

  • Mayr S, Wieser G, Bauer H (2006b) Xylem temperatures during winter in conifers at the alpine timberline. Agric For Meteorol 137:81–88

    Article  Google Scholar 

  • Mayr S, Cochard H, Ameglio T, Kikuta S (2007) Embolism formation during freezing in the wood of Picea abies. Plant Physiol 143:60–67

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Beikircher B, Obkircher M-A, Schmid P (2010a) Hydraulic plasticity and limitations of alpine Rhododendron species. Oecologia. doi:DOI 10.1007/s00442-010-1648-7

  • Mayr S, Schwienbacher F, Dämon B (2010b) Increased winter transpiration of Norway spruce needles after infection by the rust Chrysomyxa rhododendri. Protoplasma 243:137–143

    Article  PubMed  Google Scholar 

  • Michaelis P (1934a) Ökologische Studien an der Baumgrenze IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrbuch für wissenschaftliche Botanik 80:169–247

    Google Scholar 

  • Michaelis P (1934b) Ökologische Studien an der Baumgrenze V. Osmotischer Wert und Wassergehalt während des Winters in den verschiedenen Höhenlagen. Jahrbuch für wissenschaftliche Botanik 80:337–362

    Google Scholar 

  • Nardini A, Salleo S, LoGullo MA, Pitt F (2000) Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139–147

    Article  Google Scholar 

  • Neuwinger I (1980) Erwärmung, Wasserrückhalt und Erosionsbereitschaft subalpiner Böden. Mitt Forstl Bundes Versuchsanstalt (Wien) 129:113–144

    Google Scholar 

  • Neuwinger-Raschendorfer I (1963) Bodenfeuchtemessungen. Mitteilungen der Forstlichen Bundesversuchsanstalt Mariabrunn 59:257–264

    Google Scholar 

  • Pittermann J, Sperry JS (2003) Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol 23:907–914

    PubMed  Google Scholar 

  • Pittermann J, Sperry JS (2006) Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiol 140:374–382

    Article  PubMed  CAS  Google Scholar 

  • Platter W (1976) Wasserhaushalt, cuticuläres Transpirationsvermögen und Dicke der Cutinschichten einiger Nadelholzarten in verschiedenen Höhenlagen und nach experimenteller Verkürzung der Vegetationsperiode. Dissertation Universität Innsbruck

    Google Scholar 

  • Richards JH, Bliss LC (1986) Winter water relations of a deciduous timberline conifer, Larix lyallii Parl. Oecologia 69:16–24

    Article  Google Scholar 

  • Schwienbacher F (2008) Winterembolien an der alpinen Waldgrenze: vergleichende Untersuchungen an Fichte. Dissertation Universität Innsbruck, Zirbe und Lärche

    Google Scholar 

  • Smith WK, Young DR, Carter GA, Hadley JL, McNaughton GM (1984) Autumn stomatal closure in six conifer species of the Central Rocky Mountains. Oecologia 63:237–242

    Article  Google Scholar 

  • Sowell JB, Kouitnik DL, Lansing AJ (1982) Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arct Alp Res 14:97–103

    Article  Google Scholar 

  • Sparks JP, Black RA (1998) Winter hydraulic conductivity and xylem cavitation in coniferous trees from upper and lower treeline. Arct Antarct Alp Res 32:397–403

    Article  Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468–475

    Article  Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol 17:275–280

    PubMed  Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous and conifer species. Plant Physiol 100:605–613

    Article  PubMed  CAS  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Article  Google Scholar 

  • Tranquillini W (1957) Standortsklima, Wasserbilanz und CO2-Gaswechsel junger Zirben (Pinus cembra L.) an der alpinen Waldgrenze. Planta 49:612–661

    Article  Google Scholar 

  • Tranquillini W (1973) Der Wasserhaushalt junger Forstpflanzen nach dem Versetzen und seine Beeinflussbarkeit. Centralblatt für das gesamte Forstwesen 90:46–52

    Google Scholar 

  • Tranquillini W (1974) Der Einfluß von Seehöhe und Länge der Vegetationszeit auf das cuticuläre Transpirationsvermögen von Fichtensämlingen im Winter. Berichte der Deutschen Botanischen Gesellschaft 87:175–184

    Google Scholar 

  • Tranquillini W (1976) Water relations and alpine timberline. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life, Ecological studies, Vol 19. Springer, Berlin, pp 473–491

    Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps. Ecological studies, Vol 31. Springer, Berlin

    Google Scholar 

  • Tranquillini W, Platter W (1983) Der winterliche Wasserhaushalt der Lärche (Larix decidua Mill.) an der alpinen Waldgrenze. Verhandlungen Gesellschaft für Ökologie 9:433–443

    Google Scholar 

  • Turner H (1961) Jahresgang und biologische Wirkung der Sonnen- und Himmelsstrahlung an der Waldgrenze der Ötztaler Alpen. Wetter Leben 13:93–113

    Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Google Scholar 

  • Van Gradingen P, Grace J, Jeffree CE (1991) Abrasive damage by wind to the needle surface of Pinus sylvestris L. and Picea sitchensis (Bong.) Carr. plant. Cell Env 14:185–193

    Article  Google Scholar 

  • Wieser G (2000) Seasonal variation of leaf conductance in a subalpine Pinus cembra during the winter months. Phyton 40:185–190

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer Verlag, Berlin

    Google Scholar 

  • Zweifel R, Häsler R (2000) Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology 102:213–222

    Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting maxwell’s demon: biophysics of xylem embolism repair. Trends in Plant Science 14:530–534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Mayr, S., Schmid, P., Beikircher, B. (2012). Plant Water Relations in Alpine Winter. In: Lütz, C. (eds) Plants in Alpine Regions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0136-0_11

Download citation

Publish with us

Policies and ethics