Skip to main content

Tendon Biomechanics

  • Chapter
  • First Online:
Muscle and Tendon Injuries

Abstract

Tendons are complex connective tissues within the musculoskeletal system that are essential to both locomotion and joint stability. Tendon tissue consists of parallel collagen fibers embedded within an extracellular matrix. This organized structure aides in tendon mechanical behavior and their ability to function as an intermediary to transmit forces between the muscle and bone and also maintain joint stability. Understanding the biomechanical properties of tendons is important in order to optimize treatment strategies for tendon pathology. The purpose of this chapter is to provide an overview of tendon biomechanics including a description of tendon composition and structure, mechanical properties, mechanical testing, and factors that affect mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abate M et al (2009) Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther 11:235

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnoczky SP et al (2008) Loss of homeostatic strain alters mechanostat ‘set point’ of tendon cells in vitro. Clin Orthop Relat Res 466:1583–1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Artan AS, Basgoze B (2015) Bilateral quadriceps tendon rupture in a hemodialysis patient. Clin Exp Nephrol 19:755–756

    Article  PubMed  Google Scholar 

  • Atkinson TS, Ewers BJ, Haut RC (1999) The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J Biomech 32:907–914

    Article  CAS  PubMed  Google Scholar 

  • Beason DP et al (2013) Hypercholesterolemia increases supraspinatus tendon stiffness and elastic modulus across multiple species. J Shoulder Elb Surg 22:681–686

    Article  Google Scholar 

  • Birch HL, Peffers MJ, Clegg PD (2016) Influence of ageing on tendon homeostasis. Adv Exp Med Biol 920:247–260. doi:10.1007/978-3-319-33943-6_24

  • Buckley MR, Sarver JJ, Freedman BR, Soslowsky LJ (2013) The dynamics of collagen uncrimping and lateral contraction in tendon and the effect of ionic concentration. J Biomech 46:2242–2249

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2011) Effect of repeated freezing-thawing on the Achilles tendon of rabbits. Knee Surg Sports Traumatol Arthrosc 19:1028–1034

    Article  PubMed  Google Scholar 

  • Connizzo BK, Bhatt PR, Liechty KW, Soslowsky LJ (2014) Diabetes alters mechanical properties and collagen fiber re-alignment in multiple mouse tendons. Ann Biomed Eng 42:1880–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale WC, Baer E, Keller A, Kohn RR (1972) On the ultrastructure of mammalian tendon. Experientia 28:1293–1295

    Article  CAS  PubMed  Google Scholar 

  • Diamant J, Keller A, Baer E, Litt M, Arridge RG (1972) Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc Lond B Biol Sci 180:293–315

    Article  CAS  PubMed  Google Scholar 

  • Dykyj D, Jules KT (1991) The clinical anatomy of tendons. J Am Podiatr Med Assoc 81:358–365

    Article  CAS  PubMed  Google Scholar 

  • Favata M (2006) Scarless healing in the fetus: implications and strategies for postnatal tendon repair. University of Pennsylvania, Philadelphia

    Google Scholar 

  • Freedman BR, Sarver JJ, Buckley MR, Voleti PB, Soslowsky LJ (2014) Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J Biomech 47:2028–2034

    Article  PubMed  Google Scholar 

  • Freedman B et al (2016) Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model. J Orthop Res n/a-n/a. doi:10.1002/jor.23253

  • Fryhofer GW et al (2016) Postinjury biomechanics of Achilles tendon vary by sex and hormone status. J Appl Physiol 121:1106–1114

    Article  PubMed  Google Scholar 

  • Fung Y-C (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  • Fung DT et al (2009) Subrupture tendon fatigue damage. J Orthop Res 27:264–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Fung DT et al (2010) Early response to tendon fatigue damage accumulation in a novel in vivo model. J Biomech 43:274–279

    Article  PubMed  Google Scholar 

  • Hansen M, Kjaer M (2016) Sex hormones and tendon. Adv Exp Med Biol 920:139–149. doi:10.1007/978-3-319-33943-6_13

  • Huang C-Y, Wang VM, Flatow EL, Mow VC (2009) Temperature-dependent viscoelastic properties of the human supraspinatus tendon. J Biomech 42:546–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Zhang J, Sun K, Zhang X, Tian S (2011) Effects of repetitive multiple freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis and flexor pollicis longus tendons. Clin Biomech 26:419–423

    Article  Google Scholar 

  • Ichinose R et al (2010) Alteration of the material properties of the normal supraspinatus tendon by nicotine treatment in a rat model. Acta Orthop 81:634–638

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalamajski S, Oldberg A (2009) Homologous sequence in lumican and fibromodulin leucine-rich repeat 5-7 competes for collagen binding. J Biol Chem 284:534–539

    Article  CAS  PubMed  Google Scholar 

  • Lake SP, Miller KS, Elliott DM, Soslowsky LJ (2010) Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy. J Biomech 43:727–732

    Article  PubMed  Google Scholar 

  • Langberg H, Olesen J, Skovgaard D, Kjær M (2001) Age related blood flow around the Achilles tendon during exercise in humans. Eur J Appl Physiol 84:246–248

    Article  CAS  PubMed  Google Scholar 

  • Maganaris CN (2002) Tensile properties of in vivo human tendinous tissue. J Biomech 35:1019–1027

    Article  PubMed  Google Scholar 

  • Masic A et al (2015) Osmotic pressure induced tensile forces in tendon collagen. Nat Commun 6:5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KS, Edelstein L, Connizzo BK, Soslowsky LJ (2012) Effect of preconditioning and stress relaxation on local collagen fiber re-alignment: inhomogeneous properties of rat supraspinatus tendon. J Biomech Eng 134:31007

    Article  PubMed Central  Google Scholar 

  • O’Brien M (1992) Functional anatomy and physiology of tendons. Clin Sports Med 11:505–520

    PubMed  Google Scholar 

  • Pardes AM et al (2016) Males have inferior Achilles tendon material properties compared to females in a rodent model. Ann Biomed Eng 44:2901–2910

    Article  CAS  PubMed  Google Scholar 

  • Peltz CD, Perry SM, Getz CL, Soslowsky LJ (2009) Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J Orthop Res 27:416–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Suto K et al (2012) Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank 13:71–80

    Article  CAS  PubMed  Google Scholar 

  • TaÅŸoÄŸlu Ö, Ekiz T, Yenigün D, Akyüz M, Özgirgin N (2016) Bilateral quadriceps and triceps tendon rupture in a hemodialysis patient. Hemodial Int 20:E19–E21

    Article  PubMed  Google Scholar 

  • Woo SLY, Fisher MB, Feola AJ (2008) Contribution of biomechanics to management of ligament and tendon injuries. Mol Cell Biomech 5:49–68

    PubMed  Google Scholar 

  • Wren TAL, Lindsey DP, Beaupré GS, Carter DR (2003) Effects of creep and cyclic loading on the mechanical properties and failure of human Achilles tendons. Ann Biomed Eng 31:710–717

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Soslowsky Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Beach, Z.M., Gittings, D.J., Soslowsky, L.J. (2017). Tendon Biomechanics. In: Canata, G., d'Hooghe, P., Hunt, K. (eds) Muscle and Tendon Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54184-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54184-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54183-8

  • Online ISBN: 978-3-662-54184-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics