Skip to main content
Log in

Loss of Homeostatic Strain Alters Mechanostat “Set Point” of Tendon Cells In Vitro

  • Symposium: Molecular and Clinical Developments in Tendinopathy
  • Published:
Clinical Orthopaedics and Related Research

Abstract

Tendon cells respond to mechanical loads. The character (anabolic or catabolic) and sensitivity of this response is determined by the mechanostat set point of the cell, which is governed by the cytoskeleton and its interaction with the extracellular matrix. To determine if loss of cytoskeletal tension following stress deprivation decreases the mechanoresponsiveness of tendon cells, we cultured rat tail tendons under stress-deprived conditions for 48 hours and then cyclically loaded them for 24 hours at 1%, 3%, or 6% strain at 0.17 Hz. Stress deprivation upregulated MMP-13 mRNA expression and caused progressive loss of cell-matrix contact compared to fresh controls. The application of 1% strain to fresh tendons for 24 hours inhibited MMP-13 mRNA expression compared to stress-deprived tendons over the same period. However, when tendons were stress-deprived for 48 hours and then subjected to the same loading regime, the inhibition of MMP-13 mRNA expression was decreased. In stress-deprived tendons, it was necessary to increase the strain magnitude to 3% to achieve the same level of MMP-13 mRNA inhibition seen in fresh tendons exercised at 1% strain. The data suggest loss of cytoskeletal tension alters the mechanostat set point and decreases the mechanoresponsiveness of tendon cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3
Fig. 4A–B

Similar content being viewed by others

References

  1. Alfredson H, Lorentzon M, Bäckman S, Bäckman A, Lerner UH. cDNA arrays and real time qualitative PCR techniques in the investigation of chronic Achilles tendinosis. J Orthop Res. 2003;21:970–975.

    Article  PubMed  CAS  Google Scholar 

  2. Arnoczky SP, Lavagnino M, Egerbacher M. The response of tendon cells to changing loads: implications in the etiopathogenesis of tendinopathy. In: Woo S-L-Y, Renstrom P, Arnoczky SP, eds. Understanding and Prevention of Tendinopathy in the Athlete, Encyclopedia of Sports Medicine. Blackwell Publishing: Oxford, England; 2007:46–59.

    Google Scholar 

  3. Arnoczky SP, Lavagnino M, Egerbacher M. The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Path. 2007;88:217–226.

    Article  Google Scholar 

  4. Arnoczky SP, Lavagnino M, Whallon JJ, Hoonjan A. In situ cell nucleus deformation under tensile load: a morphologic analysis using confocal laser microscopy. J Orthop Res. 2002;20:29–35.

    Article  PubMed  Google Scholar 

  5. Arnoczky SP, Tian T, Lavagnino M, Gardner K. Ex vivo static tensile loading inhibits MMP-1 expression in rat-tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res. 2004;22:328–333.

    Article  PubMed  CAS  Google Scholar 

  6. Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, Zernicke R, Herzog W, Kelley S, Miller L. Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage. 1999;7:141–153.

    Article  PubMed  CAS  Google Scholar 

  7. Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T. Cyclic mechanical load and growth factors stimulate DNA synthesis in avian tendon cells. J Biomech. 1995;28:1505–1513.

    Article  PubMed  CAS  Google Scholar 

  8. Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol. 1995;73:349–365.

    Article  PubMed  CAS  Google Scholar 

  9. Bonaldo P, Russo V, Bucciotti F, Doliana R, Colombatti A. Structural and functional features of the α3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry. 1990;29:1245–1254.

    Article  PubMed  CAS  Google Scholar 

  10. Brown RA, Prajapati R, McGrouther DA, Yannus IV, Eastwood M. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three dimensional substrates. J Cell Physiol. 1998;175:323–332.

    Article  PubMed  CAS  Google Scholar 

  11. Cannell LJ, Taunton JE, Clement DB, Smith C, Khan KM. A randomized clinical trial of the efficacy of drop squats or leg curl exercises to treat clinically diagnosed jumper’s knee in athletes: pilot study. Br J Sports Med. 2001;35:60–64.

    Article  PubMed  CAS  Google Scholar 

  12. Chen CS, Ingber DE. Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthritis Cartilage. 1999;7:81–94.

    Article  PubMed  CAS  Google Scholar 

  13. Chicurel ME, Chen CS, Ingber DE. Cellular control lies in the balance of forces. Curr Opin Cell Biol. 1998;10:232–239.

    Article  PubMed  CAS  Google Scholar 

  14. Ciarelli MJ, Arnoczky SP, Kilfoyle SJ, Makidon PE. Demonstration of intercellular communications (gap junctions) in tendon cells in situ. Trans Orthop Res. 1996;21:372.

    Google Scholar 

  15. Donahue HJ. Gap junctional intercellular communications in bone: a cellular basis for the mechanostat set point. Calcif Tissue Int. 1998;62:85–88.

    Article  PubMed  CAS  Google Scholar 

  16. Eastwood M, McGrouther DA, Brown RA. Fibroblast responses to mechanical forces. Proc Instn Mech Eng [H]. 1998;212:85–92.

    Article  CAS  Google Scholar 

  17. Egerbacher M, Arnoczky SP, Caballero O, Lavagnino M, Gardner KL. Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res. 2008;466. DOI: 10.1007/s11999-008-0274-8.

  18. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec 1987;219:1–9.

    Article  PubMed  CAS  Google Scholar 

  19. Fu SC, Chan BP, Wang W, Pau HM, Chan KM, Rolf CG. Increased expression of matrix metalloproteinase 1 (MMP-1) in 11 patients with patellar tendinosis. Acta Orthop Scand. 2002;73:658–662.

    Article  PubMed  Google Scholar 

  20. Grinnell F. Signal transduction pathways activated during fibroblast contraction of collagen matrices. Curr Topic Pathol. 1999;93:61–73.

    CAS  Google Scholar 

  21. Hannafin JA, Arnoczky SP, Hoonjan A, Torzilli PA. The effect of immobilization and cyclic tensile loading on the histology and material properties of canine flexor digitorum profundus tendons: an in vitro study. J Orthop Res. 1995;13:907–914.

    Article  PubMed  CAS  Google Scholar 

  22. Ingber DE. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991;3:841–848.

    Article  PubMed  CAS  Google Scholar 

  23. Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–599.

    Article  PubMed  CAS  Google Scholar 

  24. Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, Riley G. Changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol. 2001;20:159–169.

    Article  PubMed  CAS  Google Scholar 

  25. Janmey PA. The cytoskeleton and cell signaling component localization and mechanical coupling. Physiol Rev. 1998;78:763–781.

    PubMed  CAS  Google Scholar 

  26. Järvinen M, Józsa L, Kannus P, Järvinen TL, Kvist M, Leadbetter W. Histopathological findings in chronic tendon disorders. Scand J Med Sci Sports. 1997;7:86–95.

    PubMed  Google Scholar 

  27. Jensen K, DiFabio RP. Evaluation of eccentric exercise in treatment of patellar tendonitis. Phys Ther. 1989;69:211–216.

    PubMed  CAS  Google Scholar 

  28. Jones GC, Corps AN, Penninton CJ, Clark IM, Edwards DR, Bradley MM, Hazelman BL, Riley GP. Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerative human Achilles tendon. Arthritis Rheum. 2006;54:832–842.

    Article  PubMed  CAS  Google Scholar 

  29. Jonsson P, Alfredson H. Superior results with eccentric compared to concentric quadriceps training in patients with jumper’s knee: a prospective randomized study. Br J Sports Med. 2005;39:847–850.

    Article  PubMed  CAS  Google Scholar 

  30. Józsa LG, Reffy A, Kannus P, Demel S, Elek E. Pathological alterations in human tendons. Arch Orthop Trauma Surg. 1990;110:15–21.

    Article  PubMed  Google Scholar 

  31. Kannus P, Józsa LG. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73:1507–1525.

    PubMed  CAS  Google Scholar 

  32. Kongsgaard M, Aagaard P, Roikjaer S, Olsen D, Jensen M, Langberg H, Magnusson SP. Decline eccentric squats increase patellar tendon loading compared to standard eccentric squats. Clin Biomech. 2006;21:748–754.

    Article  CAS  Google Scholar 

  33. Lavagnino M, Arnoczky SP. In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res. 2005;23:1211–1218.

    Article  PubMed  CAS  Google Scholar 

  34. Lavagnino M, Arnoczky SP, Egerbacher M, Gardner K, Burns ME. Isolated fibrillar damage in tendons stimulates local collagenase mRNA expression and protein synthesis. J Biomech. 2006;39:2355–2362.

    Article  PubMed  Google Scholar 

  35. Lavagnino M, Arnoczky SP, Frank K, Tian T. Collagen fiber diameter distribution does not reflect changes in the mechanical properties of stress-deprived tendons. J Biomech. 2005;38:69–75.

    PubMed  Google Scholar 

  36. Lavagnino M, Arnoczky SP, Tian T, Vaupel Z. Effect of amplitude and frequency of cyclic tensile strain on the inhibition of MMP-1 mRNA expression in tendon cells: in vitro study. Connect Tissue Res. 2003;44:181–187.

    Article  PubMed  CAS  Google Scholar 

  37. Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med. 1992;11:533–578.

    PubMed  CAS  Google Scholar 

  38. Lian O, Scott A, Engebretsen L, Bahr R, Duronio V, Khan K. Excessive apoptosis in patellar tendinopathy in athletes. Am J Sports Med. 2007;35:605–611.

    Article  PubMed  Google Scholar 

  39. Lo IKY, Marchuk L, Hollinshead R. Matrix metalloproteinases and tissue inhibitors of metalloproteinases mRNA are specifically altered in torn rotator cuff tendons. Am J Sports Med. 2004;32:1223–1229.

    Article  PubMed  Google Scholar 

  40. Magra M, Maffulli N. Matrix metalloproteases: a role in overuse tendinopathies. Br J Sports Med. 2005;39:789–791.

    Article  PubMed  CAS  Google Scholar 

  41. Majima T, Marchuk LL, Shrive NG, Frank CB, Hart DA. In-vitro cyclic tensile loading of an immobilized and mobilized ligament autografts selectively inhibits mRNA levels for collagenase (MMP-1). J Orthop Sci. 2000;5:503–510.

    Article  PubMed  CAS  Google Scholar 

  42. McNeilly CM, Banes AJ, Benjamin M, Ralphs JR. Tendon cells in vivo form three dimensional network of cell processes linked by gap junctions. J Anat. 1996;189:593–600.

    PubMed  Google Scholar 

  43. Oh J, Zhao C, Amadio PC, An K-N, Zobitz ME, Wold LE. Immunolocalization of collagen types in the subsynovial connective tissue within the carpal tunnel in humans. J Orthop Res. 2005;23:1226–1231.

    Article  PubMed  CAS  Google Scholar 

  44. Purdam CR, Jonsson P, Alfredson H, Lorentzon R, Cook JL, Khan KM. A pilot study of the eccentric decline squat in the management of painful chronic patellar tendinopathy. Br J Sports Med. 2004;38:395–397.

    Article  PubMed  CAS  Google Scholar 

  45. Riley GP. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology. 2004;43:131–142.

    CAS  Google Scholar 

  46. Ritty TM, Roth R, Heuser JE. Tendon cell array isolation reveals a previously unknown fibrillin-2-containing macromolecular assembly. Structure. 2003;11:1179–1188.

    Article  PubMed  CAS  Google Scholar 

  47. Rosales C, O’Brien V, Kornberg L, Juliano R. Signal transduction by cell adhesion receptors. Biochim Biophys Acta. 1995;1242:77–98.

    PubMed  Google Scholar 

  48. Rubin C, Sun Y-Q, Hadjiargyrou M, McLeod K. Increased expression of matrix metalloproteinase-1 in osteocytes precedes bone resorption as stimulated by disuse: evidence for autoregulation of the cell’s mechanical environment? J Orthop Res. 1999;17:354–361.

    Article  PubMed  CAS  Google Scholar 

  49. Sachs F. Mechanical transduction in biological systems. Crit Rev Biomed Eng. 1988;16:141–169.

    PubMed  CAS  Google Scholar 

  50. Scott A, Khan KM, Cook JL, Duronio V. Human tendon overuse pathology: histopathologic and biochemical findings. In: Woo S-L-Y, Renstrom P, Arnoczky SP, eds. Understanding and Prevention of Tendinopathy in the Athlete, Encyclopedia of Sports Medicine. Blackwell Publishing: Oxford, England; 2007:69–84.

    Google Scholar 

  51. Senga K, Kobayashi M, Hattori H, Yasue K, Mizutani H, Ueda M, Hoshino T. Type VI collagen in mouse masseter tendon, from osseous attachment to myotendinous junction. Anat Rec. 1995;243:294–302.

    Article  PubMed  CAS  Google Scholar 

  52. Shirakura K, Ciarelli M, Arnoczky SP, Whallon JH. Deformation induced calcium signaling. Trans Comb Orthop Res. 1995;2:94.

    Google Scholar 

  53. Sung K-LP, Whittemore DE, Yang L, Amiel D, Akeson WH. Signal pathways and ligament cell adhesiveness. J Orthop Res. 1996;14:729–735.

    Article  PubMed  CAS  Google Scholar 

  54. Tuoheti Y, Itoi E, Pradhan RL, Wakabayashi I, Takahashi S, Minagawa H, Kobayashi M, Okada K, Shimada Y. Apoptosis in the supraspinatus tendon with stage II subacromial impingement. J Shoulder Elbow Surg. 2005;14:535–541.

    Article  PubMed  Google Scholar 

  55. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260:1124–1127.

    Article  PubMed  CAS  Google Scholar 

  56. Watson PA. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991;5:2013–2019.

    PubMed  CAS  Google Scholar 

  57. Young MA, Cook JL, Purdam CR, Kiss ZS, Alfredson H. Eccentric decline squat protocol offers superior results at 12 months compared with traditional eccentric protocol for patellar tendinopathy in volleyball players. Br J Sports Med. 2005;39:102–105.

    Article  PubMed  CAS  Google Scholar 

  58. Waggett AD, Benjamin M, Ralphs JR. Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol. 2006;85:1145–1154.

    Article  PubMed  CAS  Google Scholar 

  59. Wang N, Ingber DE. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J. 1994;66:2181–2189.

    Article  PubMed  CAS  Google Scholar 

  60. Yuan J, Murrell GA, Wei AQ, Wang MX. Apoptosis in rotator cuff tendinopathy. J Orthop Res. 2002;20:1372–1379.

    Article  PubMed  Google Scholar 

  61. Yuan J, Wang MX, Murrell GA. Cell death and tendinopathy. Clin Sports Med. 2003;22:693–701.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ralph Commons for his assistance in obtaining the electron photomicrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Arnoczky DVM.

Additional information

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution has approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

About this article

Cite this article

Arnoczky, S.P., Lavagnino, M., Egerbacher, M. et al. Loss of Homeostatic Strain Alters Mechanostat “Set Point” of Tendon Cells In Vitro. Clin Orthop Relat Res 466, 1583–1591 (2008). https://doi.org/10.1007/s11999-008-0264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0264-x

Keywords

Navigation