Skip to main content

Fish-FISH: Molecular Cytogenetics in Fish Species

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Abstract

Fishes exhibit the greatest biodiversity among the vertebrates, making them an extremely attractive group to study a number of evolutionary questions. Over the last years, the development and improvement of cytogenetic FISH analyses have substantially expanded the methods of chromosome studies and have played an important role in the precise characterization of the structure of fish genomes. Here, besides presenting the current fish-FISH protocol, which is frequently applied in many laboratories for freshwater and marine species, we also include details about the isolation and preparation of the sequences most commonly used as probes in fish-FISH experiments. Moreover, considering the quality of the chromosomal preparations in fishes, some critical steps that are crucial for the success of the experiments are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eschmeyer WN, Fong JD (2016) Species by Family/subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Accessed 01 Feb 2016

  2. Oliveira C, Foresti F, Hilsdorf AWS (2009) Genetics of neotropical fish: from chromosomes to populations. Fish Physiol Biochem 35:81–100

    Article  CAS  PubMed  Google Scholar 

  3. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Brazil J Genet 1:103–120

    Google Scholar 

  4. Gold JR, Li YC, Shipley NS et al (1990) Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J Fish Biol 37:563–575

    Article  Google Scholar 

  5. Foresti F, Oliveira C, Almeida Toledo LF (1993) A method for chromosome preparations from large specimens of fishes using in vitro short treatment with colchicine. Experientia 49:810–813

    Article  CAS  Google Scholar 

  6. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    Article  CAS  PubMed  Google Scholar 

  7. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

  8. Phillips RB, Konkol NR, Reed KM et al (2001) Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo and Salvelinus. Genetica 111:119–123

    Article  Google Scholar 

  9. Cioffi MB, Liehr T, Trifonov V et al (2013) Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet Genome Res 141:186–194

    Article  CAS  PubMed  Google Scholar 

  10. Silva DMZA, Pansonato-Alves JC, Utsunomia R et al (2014) Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes). PLoS One 9:e94896

    Article  PubMed  PubMed Central  Google Scholar 

  11. Symonová R, Sember A, Majtánová Z et al (2015) Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C, Pisano E, Foresti F, Almeida Toledo LF (eds) Fish cytogenetic techniques. Ray-fin fishes and Chondrichthyans. CCR Press, Boca Raton

    Google Scholar 

  12. Bertollo LAC, Moreira-Filho, Cioffi MB (2015) Direct chromosome preparations from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, Almeida Toledo LF (eds) Fish cytogenetic techniques. Ray-fin fishes and Chondrichthyans. CCR Press, Boca Raton

    Google Scholar 

  13. Kligerman AD, Bloom SE (1977) Rapid chromosome preparations from solid tissues of fishes. J Fish Res Board Can 34:266–269

    Article  Google Scholar 

  14. Claussen U, Michel S, Mühlig P et al (2002) Demystifying chromosome preparation and the implications for the concept of chromosome condensation during mitosis. Cytogenet Genome Res 98:136–146

    Article  CAS  PubMed  Google Scholar 

  15. López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. Genome Dyn 7:1–28

    Article  PubMed  Google Scholar 

  16. Cioffi MB, Bertollo LAC (2012) Chromosomal distribution and evolution of repetitive DNAs in fish. Genome Dyn 7:197–221

    Article  CAS  PubMed  Google Scholar 

  17. Cioffi MB, Martins C, Centofante L et al (2009) Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet Genome Res 125:132–141

    Article  CAS  PubMed  Google Scholar 

  18. Martins C, Galetti PM Jr (1999) Chromosomal localization of 5S rDNA genes in Leporinus Fish (Anostomidae, Characiformes). Chrom Res 7:363–367

    Article  CAS  PubMed  Google Scholar 

  19. Cross I, Rebordinos L (2005) 5S rDNA and U2 snRNA are linked in the genome of Crassostrea angulata and Crassostrea gigas oysters: does the (CT)n(GA)n micro-satellite stabilize this novel linkage of large tandem arrays? Genome 48:1116–1119

    Article  CAS  PubMed  Google Scholar 

  20. Pan ZQ, Prives C (1989) U2 snRNA sequences that bind U2-specific proteins are dispensable for the function of U2 snRNP in splicing. Genes Dev 3:1887–1898

    Article  CAS  PubMed  Google Scholar 

  21. Volff JN, Bouneau L, Ozouf-Costaz C et al (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19:674–678

    Article  CAS  PubMed  Google Scholar 

  22. Volff JN, Korting C, Sweeney K et al (1999) The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol 16:1427–1438

    Article  CAS  PubMed  Google Scholar 

  23. Volff JN, Korting C, Froschauer A et al (2001) Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52:351–360

    CAS  PubMed  Google Scholar 

  24. Zwick MS, Hanson RE, McKnight TD et al (1997) A rapid procedure for the isolation of Cot-1 DNA from plants. Genome 40:138–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the Brazilian funding agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Process 2014/23172-4) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Process 304992/2015-1) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Bello Cioffi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Yano, C.F., Bertollo, L.A.C., Cioffi, M.d.B. (2017). Fish-FISH: Molecular Cytogenetics in Fish Species. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics