Skip to main content

Enhancing Search-Based QBF Solving by Dynamic Blocked Clause Elimination

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9450))

Included in the following conference series:

Abstract

Among preprocessing techniques for quantified Boolean formula (QBF) solving, quantified blocked clause elimination (QBCE) has been found to be extremely effective. We investigate the power of dynamically applying QBCE in search-based QBF solving with clause and cube learning (QCDCL). This dynamic application of QBCE is in sharp contrast to its typical use as a mere preprocessing technique. In our dynamic approach, QBCE is applied eagerly to the formula interpreted under the assignments that have been enumerated in QCDCL. The tight integration of QBCE in QCDCL results in a variant of cube learning which is exponentially stronger than the traditional method. We implemented our approach in the QBF solver DepQBF and ran experiments on instances from the QBF Gallery 2014. On application benchmarks, QCDCL with dynamic QBCE substantially outperforms traditional QCDCL. Moreover, our approach is compatible with incremental solving and can be combined with preprocessing techniques other than QBCE.

Supported by the Austrian Science Fund (FWF) under grants S11408-N23 and S11409-N23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(C'\) can also contain literals assigned by pure/unit literal detection, but as they are left to the maximal decision variable in the prefix, we treat them like decision variables.

  2. 2.

    http://lonsing.github.io/depqbf/.

  3. 3.

    http://qbf.satisfiability.org/gallery.

References

  1. Ansótegui, C., Gomes, C.P., Selman, B.: The achilles’ heel of QBF. In: AAAI/IAAI, pp. 275–281. AAAI Press/The MIT Press (2005)

    Google Scholar 

  2. Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. JSAT 5(1–4), 133–191 (2008)

    MathSciNet  Google Scholar 

  3. Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  5. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints 14(1), 38–79 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gent, I.P., Giunchiglia, E., Narizzano, M., Rowley, A.G.D., Tacchella, A.: Watched data structures for QBF solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: an effective preprocessor for QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Goultiaeva, A., Bacchus, F.: Exploiting circuit representations in QBF solving. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 333–339. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-based QBF solving. In: Järvisalo, M., Van Gelder, A. (ed.) DATE, pp. 811–814. ACM (2013)

    Google Scholar 

  11. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. JAIR 53, 127–168 (2015)

    Google Scholar 

  12. Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)

    Article  MATH  Google Scholar 

  15. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Pulina, L., Tacchella, A.: A structural approach to reasoning with quantified boolean formulas. In: IJCAI, pp. 596–602 (2009)

    Google Scholar 

  18. Ramesh, A., Becker, G., Murray, N.V.: CNF and DNF considered harmful for computing prime implicants/implicates. JAIR 18(3), 337–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. JAR 42(1), 77–97 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Samulowitz, H., Bacchus, F.: Dynamically partitioning for solving QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 215–229. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  24. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Van Gelder, A.: Primal and dual encoding from applications into quantified boolean formulas. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 694–707. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Van Gelder, A., Wood, S.B., Lonsing, F.: Extended failed-literal preprocessing for quantified boolean formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 86–99. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms. In: Dustdar, S., Schall, D., Skopik, F., Juszczyk, L., Psaier, H. (eds.) AAAI/IAAI, pp. 143–150. AAAI Press (2006)

    Google Scholar 

  28. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lonsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M. (2015). Enhancing Search-Based QBF Solving by Dynamic Blocked Clause Elimination. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48899-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48898-0

  • Online ISBN: 978-3-662-48899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics