Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Statistical-mechanical, reference interaction site model (GlossaryTerm

RISM

) molecular theory of solvation is promising as an essential part of multiscale methodology for chemical and biomolecular nanosystems in solution. Beginning with a force field of site interaction potentials between solution species, it uses a diagrammatic analysis of the solvation free energy to construct integral equations for 3-D spatial correlation functions of molecular interaction sites in the statistical–mechanical ensemble. With the solvation structure so obtained at the level of molecular simulation, 3D-RISM-KH further yields the solvation thermodynamics at once as a simple integral of the correlation functions which is obtained by performing thermodynamic integration analytically. The latter allows analytical differentiation of the free energy functional and thus self-consistent coupling in various multiscale approaches. 3D-RISM-KH has been coupled with the KS-DFT and CASSCF quantum chemistry methods in a self-consistent field description of electronic structure, geometry optimization, nanochemistry, and photochemistry in solution. The multiple time step molecular dynamics of biomolecules steered by effective solvation forces obtained from the 3D-RISM-KH theory, accelerated by the generalized solvation force extrapolation, and stabilized by the optimized isokinetic Nosé–Hoover chain (OIN) thermostat, enables gigantic outer time steps up to tens picoseconds to accurately calculate equilibrium properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADF:

Amsterdam density functional

ASFE:

advanced solvation force extrapolation

BPGG:

Ballone–Pastore–Galli–Gazzillo

BPTI:

bovine pancreatic trypsin inhibitor

CASSCF:

complete active space self-consistent field

CIP:

contact ion pair

CNC:

cellulose nanocrystal

CPMD:

Car–Parrinello molecular dynamics

DRISM:

dielectrically consistent reference interaction site model

EDL:

electric double layer

ESR:

equivalent serial resistance

GB:

generalized Born

GLIC:

ligand-gated ion channel

GMRes:

generalized minimal residual

GSFE:

generalized SFE

generalized solvation force extrapolation

HNC:

hypernetted chain

HRN:

helical rosette nanotube

IL:

ionic liquid

INR:

isokinetic NH chain RESPA

KH:

Kovalenko and Hirata

KS-DFT:

Kohn–Sham density functional theory

LN:

Langevin

MDIIS:

modified direct inversion in the iterative subspace

MD:

molecular dynamics

MM:

molecular mechanics

MSA:

mean spherical approximation

MS:

Martynov–Sarkisov

MTS:

multiple time step

NH:

Nosé–Hoover

NMR:

nuclear magnetic resonance

OFE:

orbital-free embedded

OIN:

optimized isokinetic Nosé–Hoover

OZ:

Ornstein–Zernike

PB:

Poisson–Boltzmann

PMF:

potential of mean force

POPC:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

PSE-n:

partial series expansions of order n

PVDC:

carbonized polyvinylidene chloride

PY:

Percus–Yevick

QM:

quantum mechanics

RDF:

radial distribution function

RESPA:

reference system propagator algorithm

RISM:

reference interaction site model

RNT:

rosette nanotube

SA:

surface area

SCS:

single carbon sphere

SDA:

spatial decomposition analysis

SFCE:

solvation force coordinate extrapolation

SFED:

solvation-free energy! density

SFE:

solvation force extrapolation

SSIP:

solvent separated ion pair

TBA:

tert-butyl alcohol

VM:

modified Verlet

References

  1. J.-P. Hansen, I. McDonald: Theory of Simple Liquids, 3rd edn. (Elsevier, Amsterdam 2006)

    MATH  Google Scholar 

  2. F. Hirata (Ed.): Molecular Theory of Solvation, Understanding Chemical Reactivity (Kluwer, Dordrecht 2003)

    Google Scholar 

  3. D. Chandler, J.D. McCoy, S.J. Singer: Density functional theory of nonuniform polyatomic systems. I. General formulation, J. Chem. Phys. 85, 5971–5976 (1986)

    Article  Google Scholar 

  4. D. Chandler, J.D. McCoy, S.J. Singer: Density functional theory of nonuniform polyatomic systems. II. Rational closures for integral equations, J. Chem. Phys. 85, 5977–5982 (1986)

    Article  Google Scholar 

  5. D. Beglov, B. Roux: Numerical solution of the HNC equation for solute of arbitrary geometry in three-dimensions, J. Chem. Phys. 103, 360–364 (1995)

    Article  Google Scholar 

  6. D. Beglov, B. Roux: An integral equation to describe the solvation of polar molecules in liquid water, J. Phys. Chem. B 101, 7821–7826 (1997)

    Article  Google Scholar 

  7. A. Kovalenko, F. Hirata: Three-dimensional density profiles of water in contact with a solute of arbitrary shape: A RISM approach, Chem. Phys. Lett. 290, 237–244 (1998)

    Article  Google Scholar 

  8. A. Kovalenko, F. Hirata: Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model, J. Chem. Phys. 110, 10095–10112 (1999)

    Article  Google Scholar 

  9. A. Kovalenko, F. Hirata: F. Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach, J. Chem. Phys. 112, 10391–10402 (2000)

    Article  Google Scholar 

  10. A. Kovalenko, F. Hirata: Potentials of mean force of simple ions in ambient aqueous solution. II. Solvation structure from the three-dimensional reference interaction site model approach, and comparison with simulations, J. Chem. Phys. 112, 10403–10416 (2000)

    Article  Google Scholar 

  11. A. Kovalenko: Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces. In: Molecular Theory of Solvation, Understanding Chemichal Reactivity, Vol. 24, ed. by F. Hirata (Springer, Dordrecht 2003) pp. 169–275

    Chapter  Google Scholar 

  12. H. Sato, A. Kovalenko, F. Hirata: Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution, J. Chem. Phys. 112, 9463–9468 (2000)

    Article  Google Scholar 

  13. D. Casanova, S. Gusarov, A. Kovalenko, T. Ziegler: Evaluation of the SCF combination of KS-DFT and 3D-RISM-KH; Solvation effect on conformational equilibria, tautomerization energies, and activation barriers, J. Chem. Theory Comput. 3, 458–476 (2007)

    Article  Google Scholar 

  14. J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko: Modeling solvatochromic shifts using the orbital-free embedding potential at statistically mechanically averaged solvent density, J. Phys. Chem. A 114, 6082–6096 (2010)

    Article  Google Scholar 

  15. M. Malvaldi, S. Bruzzone, C. Chiappe, S. Gusarov, A. Kovalenko: Ab initio study of ionic liquids by KS-DFT/3D-RISM-KH theory, J. Phys. Chem. B 113, 3536–3542 (2009)

    Article  Google Scholar 

  16. A. Kovalenko, F. Hirata: First-principles realization of a van der Waals–Maxwell theory for water, Chem. Phys. Lett. 349, 496–502 (2001)

    Article  Google Scholar 

  17. A. Kovalenko, F. Hirata: Towards a molecular theory for the van der Waals–Maxwell description of fluid phase transitions, J. Theor. Comput. Chem. 1, 381–406 (2002)

    Article  Google Scholar 

  18. V. Shapovalov, T.N. Truong, A. Kovalenko, F. Hirata: Liquid structure at metal oxide–water interface: Accuracy of a three-dimensional RISM methodology, Chem. Phys. Lett. 320, 186–193 (2000)

    Article  Google Scholar 

  19. S.R. Stoyanov, S. Gusarov, A. Kovalenko: Multiscale modeling of the adsorption interaction between bitumen model compounds and zeolite nanoparticles in gas and liquid phase. In: Industrial Applications of Molecular Simulations, ed. by M. Meunier (CRC, Boca Raton 2011) pp. 203–230

    Chapter  Google Scholar 

  20. J. Fafard, O. Lyubimova, S.R. Stoyanov, G.K. Dedzo, S. Gusarov, A. Kovalenko, C. Detellier: Adsorption of indole on kaolinite in non-aqueous media: Organoclay preparation and characterization, and 3D-RISM-KH molecular theory of solvation investigation, J. Phys. Chem. C 117, 18556–18566 (2013)

    Article  Google Scholar 

  21. J.G. Moralez, J. Raez, T. Yamazaki, R.K. Motkuri, A. Kovalenko, H. Fenniri: Helical rosette nanotubes with tunable stability and hierarchy, J. Am. Chem. Soc. 127, 8307–8309 (2005)

    Article  Google Scholar 

  22. R.S. Johnson, T. Yamazaki, A. Kovalenko, H. Fenniri: Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes, J. Am. Chem. Soc. 129, 5735–5743 (2007)

    Article  Google Scholar 

  23. G. Tikhomirov, T. Yamazaki, A. Kovalenko, H. Fenniri: Self-assembly of prolate nanospheroids from hydrophobic rosette nanotubes, Langmuir 24, 4447–4450 (2007)

    Article  Google Scholar 

  24. T. Yamazaki, H. Fenniri, A. Kovalenko: Structural water drives self-assembly of organic rosette nanotubes and holds host atoms in the channel, ChemPhysChem 11, 361–367 (2010)

    Article  Google Scholar 

  25. R. Chhabra, J.G. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A.J. Myles, A. Kovalenko, H. Fenniri: One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes, J. Am. Chem. Soc. 132, 32–33 (2010)

    Article  Google Scholar 

  26. T. Imai, R. Hiraoka, A. Kovalenko, F. Hirata: Water molecules in a protein cavity detected by a statistical-mechanical theory, J. Am. Chem. Soc. 127, 15334–15335 (2005)

    Article  Google Scholar 

  27. N. Yoshida, T. Imai, S. Phongphanphanee, A. Kovalenko, F. Hirata: Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids, J. Phys. Chem. B 113, 873–886 (2009)

    Article  Google Scholar 

  28. T. Imai, N. Miyashita, Y. Sugita, A. Kovalenko, F. Hirata, A. Kidera: Functionality mapping on internal surfaces of multidrug transporter AcrB based on molecular theory of solvation: Implications for drug efflux pathway, J. Phys. Chem. B 115, 8288–8295 (2011)

    Article  Google Scholar 

  29. T. Yamazaki, N. Blinov, D. Wishart, A. Kovalenko: Hydration effects on the HET-s prion and amyloid-β fibrillous aggregates, studied with three-dimensional molecular theory of solvation, Biophys. J. 95, 4540–4548 (2008)

    Article  Google Scholar 

  30. N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko: Association thermodynamics and conformational stability of β-sheet amyloid β(17-42) oligomers: Effects of E22Q (Dutch) mutation and charge neutralization, Biophys. J. 98, 282–296 (2010)

    Article  Google Scholar 

  31. N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko: 3D-RISM-KH approach for biomolecular modeling at nanoscale: Thermodynamics of fibril formation and beyond, Mol. Simul. 37, 718–728 (2011)

    Article  Google Scholar 

  32. A. Kovalenko, N. Blinov: Multiscale methods for nanochemistry and biophysics in solution, J. Mol. Liq. 164, 101–112 (2011)

    Article  Google Scholar 

  33. D. Nikolic, N. Blinov, D. Wishart, A. Kovalenko: 3D-RISM-DOCK: A new fragment-based drug design protocol, J. Chem. Theory Comput. 8, 3356–3372 (2012)

    Article  Google Scholar 

  34. M.C. Stumpe, N. Blinov, D. Wishart, A. Kovalenko, V.S. Pande: Calculation of local water densities in biological systems: A comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation, J. Phys. Chem. B 115, 319–328 (2011)

    Article  Google Scholar 

  35. A. Kovalenko, A.E. Kobryn, S. Gusarov, O. Lyubimova, X. Liu, N. Blinov, M. Yoshida: Molecular theory of solvation for supramolecules and soft matter structures: Application to ligand binding, ion channels, and oligomeric polyelectrolyte gelators, Soft Matter 8, 1508–1520 (2012)

    Article  Google Scholar 

  36. K. Yoshida, T. Yamaguchi, A. Kovalenko, F. Hirata: Structure of tert-butyl alcohol–water mixtures studied by the RISM theory, J. Phys. Chem. B 106, 5042–5049 (2002)

    Article  Google Scholar 

  37. I. Omelyan, A. Kovalenko, F. Hirata: Compressibility of tert-butyl alcohol–water mixtures: The RISM theory, J. Theor. Comput. Chem. 2, 193–203 (2003)

    Article  Google Scholar 

  38. A. Kovalenko, F. Hirata: A molecular theory of liquid interfaces, Phys. Chem. Chem. Phys. 7, 1785–1793 (2005)

    Article  Google Scholar 

  39. A. Kovalenko, F. Hirata: A molecular theory of solutions at liquid interfaces. In: Interfacial Nanochemistry: Molecular Science and Engineering at Liquid–Liquid Interfaces, Nanostructure Science and Technology, ed. by H. Watarai, N. Teramae, T. Sawada (Springer, Berlin, Heidelberg 2005) pp. 97–125

    Chapter  Google Scholar 

  40. T. Miyata, F. Hirata: Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution, J. Comput. Chem. 29, 871–882 (2008)

    Article  Google Scholar 

  41. T. Luchko, S. Gusarov, D.R. Roe, C. Simmerling, D.A. Case, J. Tuszynski, A. Kovalenko: Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber, J. Chem. Theory Comput. 6, 607–624 (2010)

    Article  Google Scholar 

  42. I.P. Omelyan, A. Kovalenko: Generalized canonical-isokinetic ensemble: Speeding up multiscale molecular dynamics and coupling with 3D molecular theory of solvation, Mol. Simul. 39, 25–48 (2012)

    Article  Google Scholar 

  43. I.P. Omelyan, A. Kovalenko: Multi-time-step MD/3D-RISM-KH simulation in the optimized isokinetic ensemble, accelerated with advanced extrapolation of effective solvation forces, J. Chem. Phys. 139, 244106 (2013)

    Article  Google Scholar 

  44. I.P. Omelyan, A. Kovalenko: Multi-time-step molecular dynamics of biomolecules in the optimized isokinetic Nosé-Hoover ensemble, steered by 3D-RISM-KH effective solvation forces with generalized extrapolation, J. Comput. Chem. 11, 1875–1895 (2013)

    Google Scholar 

  45. S. Gusarov, T. Ziegler, A. Kovalenko: A. self-consistent combination of the three-dimensional RISM theory of molecular solvation with analytical gradients and the Amsterdam density functional package, J. Phys. Chem. A 110, 6083–6090 (2006)

    Article  Google Scholar 

  46. B. Skinner, T. Chen, M.S. Loth, B.I. Shklovskii: Theory of volumetric capacitance of an electric double-layer supercapacitor, Phys. Rev. E 83, 056102–56111 (2011)

    Article  Google Scholar 

  47. G. Feng, D. Jiang, P.T. Cummings: Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces, J. Chem. Theory Comput. 8, 1058–1063 (2012)

    Article  Google Scholar 

  48. A. Kovalenko, F. Hirata: A replica reference interaction site model theory for a polar molecular liquid sorbed in a disordered microporous material with polar chemical groups, J. Chem. Phys. 115, 8620–8633 (2001)

    Article  Google Scholar 

  49. A. Kovalenko, F. Hirata: Description of a polar molecular liquid in a disordered microporous material with activating chemical groups by a replica RISM theory, Condens. Matter Phys. 4, 643–678 (2001)

    Article  Google Scholar 

  50. A. Tanimura, A. Kovalenko, F. Hirata: A molecular theory of a double layer formed by aqueous electrolyte solution sorbed in a carbonized polyvinylidene chloride nanoporous electrode, Chem. Phys. Lett. 378, 638–646 (2003)

    Article  Google Scholar 

  51. A. Kovalenko: Molecular description of electrosorption in a nanoporous carbon electrode, J. Comput. Theor. Nanosci. 1, 398–411 (2004)

    Article  Google Scholar 

  52. A. Tanimura, A. Kovalenko, F. Hirata: Structure of electrolyte solutions sorbed in carbon nanospaces, studied by the replica RISM theory, Langmuir 23, 1507–1517 (2007)

    Article  Google Scholar 

  53. J.S. Perkyns, G.C. Lynch, J.J. Howard, B.M. Pettitt: Protein solvation from theory and simulation: Exact treatment of coulomb interactions in three-dimensional theories, J. Chem. Phys. 132, 064106 (2010)

    Article  Google Scholar 

  54. S.M. Kast, T. Kloss: Closed-form expressions of the chemical potential for integral equation closures with certain bridge functions, J. Chem. Phys. 129, 236101–236103 (2008)

    Article  Google Scholar 

  55. I.S. Joung, T. Luchko, D.A. Case: Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions, J. Chem. Phys. 138, 044103–44115 (2013)

    Article  Google Scholar 

  56. Y. Harano, T. Imai, A. Kovalenko, M. Kinoshita, F. Hirata: Theoretical study for partial molar volume of amino acids and poly-peptides by the three-dimensional reference interaction site model, J. Chem. Phys. 114, 9506–9511 (2001)

    Article  Google Scholar 

  57. T. Imai, Y. Harano, A. Kovalenko, F. Hirata: Theoretical study for volume changes associated with the helix-coil transition of polypeptides, Biopolymers 59, 512–519 (2001)

    Article  Google Scholar 

  58. T. Yamazaki, A. Kovalenko: Spatial decomposition analysis of the thermodynamics of cyclodextrin complexation, J. Chem. Theory Comput. 5, 1723–1730 (2009)

    Article  Google Scholar 

  59. T. Yamazaki, A. Kovalenko: Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: Application to miniproteins, J. Phys. Chem. B 115, 310–318 (2011)

    Article  Google Scholar 

  60. T. Imai, K. Oda, A. Kovalenko, F. Hirata, A. Kidera: Ligand mapping on protein surfaces by the 3D-RISM theory: Toward computational fragment-based drug design, J. Am. Chem. Soc. 131, 12430–12440 (2009)

    Article  Google Scholar 

  61. J.S. Perkyns, B.M. Pettitt: A site–site theory for finite concentration saline solutions, J. Chem. Phys. 97, 7656–7666 (1992)

    Article  Google Scholar 

  62. B. Kvamme: Interaction-site representation of polar mixtures and electrolyte solutions, Int. J. Thermophys. 16, 743–750 (1995)

    Article  Google Scholar 

  63. J.G. Kirkwood, F.P. Buff: The statistical mechanical theory of solutions. I, J. Chem. Phys. 19, 774–777 (1951)

    Article  MathSciNet  Google Scholar 

  64. S. Gusarov, B.S. Pujari, A. Kovalenko: Kovalenko, efficient treatment of solvation shells in 3D molecular theory of solvation, J. Comput. Chem. 33, 1478–1494 (2012)

    Article  Google Scholar 

  65. A. Kovalenko, S. Ten-no, F. Hirata: Solution of the three-dimensional RISM/HNC equations for SPC water by the modified method of direct inversion in the iterative subspace, J. Comput. Chem. 20, 928–936 (1999)

    Article  Google Scholar 

  66. P. Pulay: Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett. 73, 393–398 (1980)

    Article  Google Scholar 

  67. Y. Saad, M.H. Schultz: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  68. N. Minezawa, S. Kato: Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations, J. Chem. Phys. 126, 054511–54515 (2007)

    Article  Google Scholar 

  69. R.R. Lahiji, X. Xu, R. Reifenberger, A. Raman, A. Rudie, R.J. Moon: Atomic force microscopy characterization of cellulose nanocrystals, Langmuir 26, 4480–4488 (2010)

    Article  Google Scholar 

  70. W. Hamad: On the development and applications of cellulosic nanofibrillar and nanocrystalline materials, Can. J. Chem. Eng. 84, 513–519 (2006)

    Article  Google Scholar 

  71. M.T. Postek, A.E. Vladar, J. Dagata, N. Farkas, B. Ming, R. Sabo, T.H. Wegner, J. Beecher: Cellulose nanocrystals the next big nano-thing?, Proc. SPIE 7042, 70420D (2008)

    Article  Google Scholar 

  72. G. Siqueira, J. Bras, A. Dufresne: Cellulosic bionanocomposites: A review of preparation, properties and applications, Polymers 2, 728–765 (2010)

    Article  Google Scholar 

  73. S.Y.Z. Zainuddin, I. Ahmad, H. Kargarzadeh, I. Abdullah, A. Dufresne: Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites, Carbohydr. Polym. 92, 2299–2305 (2013)

    Article  Google Scholar 

  74. J.P. de Mesquita, C.L. Donnici, I.F. Teixeira, F.V. Pereira: Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals, Carbohydr. Polym. 90, 210–217 (2012)

    Article  Google Scholar 

  75. R.A. Khan, S. Beck, D. Dussault, S. Salmieri, J. Bouchard, M. Lacroix: Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: Effect of gamma radiation, J. Appl. Polym. Sci. 129, 3038–3046 (2013)

    Article  Google Scholar 

  76. D. Chen, D. Lawton, M.R. Thompson, Q. Liu: Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste, Carbohydr. Polym. 90, 709–716 (2012)

    Article  Google Scholar 

  77. T. Abitbol, T. Johnstone, T.M. Quinn, D.G. Gray: Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing, Soft Matter 7, 2373–2379 (2011)

    Article  Google Scholar 

  78. A. Dorris, D.G. Gray: Gelation of cellulose nanocrystal suspensions in glycerol, Cellulose 19, 687–694 (2012)

    Article  Google Scholar 

  79. J.A. Kelly, A.M. Shukaliak, C.C.Y. Cheung, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan: Responsive photonic hydrogels based on nanocrystalline cellulose, Angew. Chem. Int. Ed. Engl. 52, 8912–8916 (2013)

    Article  Google Scholar 

  80. N. Lin, A. Dufresne: Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin, Biomacromolecules 14, 871–880 (2013)

    Article  Google Scholar 

  81. J. Yang, C.-R. Han, J.-F. Duan, F. Xu, R.-C. Sun: Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels, ACS Appl. Mater. Interfaces 5, 3199–3207 (2013)

    Article  Google Scholar 

  82. V.M. Wik, M.I. Aranguren, M.A. Mosiewicki: Castor oil-based polyurethanes containing cellulose nanocrystals, Polym. Eng. Sci. 51, 1389–1396 (2011)

    Article  Google Scholar 

  83. B.L. Holt, S.D. Stoyanov, E. Pelan, V.N. Paunov: Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives, J. Mater. Chem. 20, 10058–10070 (2010)

    Article  Google Scholar 

  84. Y.P. Zhang, V.P. Chodavarapu, A.G. Kirk, M.P. Andrews: Nanocrystalline cellulose for covert optical encryption, J. Nanophotonics 6, 063516 (2012)

    Article  Google Scholar 

  85. G. Picard, D. Simon, Y. Kadiri, J.D. LeBreux, F. Ghozayel: Cellulose nanocrystal iridescence: A new model, Langmuir 28, 14799–14807 (2012)

    Article  Google Scholar 

  86. X.M. Dong, T. Kimura, J.F. Revol, D.G. Gray: Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites, Langmuir 12, 2076–2082 (1996)

    Article  Google Scholar 

  87. S. Beck, J. Bouchard, R. Berry: Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose, Biomacromolecules 12, 167–172 (2011)

    Article  Google Scholar 

  88. K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan: Flexible and iridescent chiral nematic mesoporous organosilica films, J. Am. Chem. Soc. 134, 867–870 (2012)

    Article  Google Scholar 

  89. J.A. Kelly, K.E. Shopsowitz, J.M. Ahn, W.Y. Hamad, M.J. MacLachlan: Chiral nematic stained glass: Controlling the optical properties of nanocrystalline cellulose-templated materials, Langmuir 28, 17256–17262 (2012)

    Article  Google Scholar 

  90. M. Hasani, E.D. Cranston, G. Estman, D.G. Gray: Cationic surface functionalization of cellulose nanocrystals, Soft Matter 4, 2238–2244 (2008)

    Article  Google Scholar 

  91. Y. Habibi, L.A. Lucia, O.J. Rojas: Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem. Rev. 110, 3479–3500 (2010)

    Article  Google Scholar 

  92. J. Araki, M. Wada, S. Kuga: Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting, Langmuir 17, 21–27 (2007)

    Article  Google Scholar 

  93. S. Montanari, M. Roumani, L. Heux, M.R. Vignon: Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation, Macromolecules 38, 1665–1671 (2005)

    Article  Google Scholar 

  94. N. Wang, E. Ding, R. Cheng: Surface modification of cellulose nanocrystals, Front. Chem. Eng. China 1, 228 (2007)

    Article  Google Scholar 

  95. E.D. Cranston, D.G. Gray: Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field, Sci. Technol. Adv. Mater. 7, 319–321 (2006)

    Article  Google Scholar 

  96. C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury: Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents, Polym. 43, 2645–2651 (2002)

    Article  Google Scholar 

  97. S.R. Stoyanov, S. Gusarov, A. Kovalenko: Multiscale modeling of solvation and effective interactions of functionalized cellulose nanocrystals. In: Production and Application of Cellulose Nanoparticles, ed. by M.T. Postek, R.J. Moon, A. Rudie, M. Bilodeau (TAPPI, Peachtree Corners 2013) pp. 147–150

    Google Scholar 

  98. S.R. Stoyanov, O. Lyubimova, S. Gusarov, A. Kovalenko: Computational modeling of the structure relaxation and dispersion thermodynamics of pristine and modified cellulose nanocrystals in solution, Nordic Pulp Paper Res. J. 29(1), 144–155 (2014)

    Article  Google Scholar 

  99. Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 125, 14300–14306 (2003)

    Article  Google Scholar 

  100. Y. Boluk, L. Zhao, V. Incani: Dispersions of nanocrystalline cellulose in aqueous polymer solutions: Structure formation of colloidal rods, Langmuir 28, 6114–6123 (2012)

    Article  Google Scholar 

  101. F. Jiang, A.R. Esker, M. Roman: Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals, Langmuir 26, 17919–17925 (2010)

    Article  Google Scholar 

  102. T. Welton, P. Wasserschield: Ionic Liquids in Synthesis (VCH-Wiley, Weinheim 2007)

    Google Scholar 

  103. Y. Nishiyama, P. Langan, H. Chanzy: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 124, 9074–9082 (2002)

    Article  Google Scholar 

  104. J.A. Wagoner, N.A. Baker: Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms, Proc. Natl. Acad. Sci. USA 103, 8331–8336 (2006)

    Article  Google Scholar 

  105. R.M. Levy, L.Y. Zhang, A.K. Felts: On the nonpolar hydration free energy of proteins: Surface area and continuum solvent models for the solute-solvent interaction energy, J. Am. Chem. Soc. 125, 9523–9530 (2003)

    Article  Google Scholar 

  106. H. Gohlke, D.A. Case: Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf, J. Comput. Chem. 25, 238–250 (2004)

    Article  Google Scholar 

  107. K. Lum, D. Chandler, J. Weeks: Hydrophobicity at small and large length scales, J. Phys. Chem. B 103, 4570–4577 (1999)

    Article  Google Scholar 

  108. T.A. Wesolowski, A. Warshel: Frozen density functional approach for ab initio calculations of solvated molecules, J. Phys. Chem. 97, 8050–8053 (1993)

    Article  Google Scholar 

  109. E.J. Baerends, P. Ros, D.E. Ellis: Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure, Chem. Phys. 2, 41–51 (1973)

    Article  Google Scholar 

  110. G. te Velde, F. Bickelhaupt, S. van Gisbergen, C. Fonseca Guerra, E. Baerends, J. Snijders, T. Ziegler: Chemistry with ADF, J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  111. C. Fonseca Guerra, J. Snijders: G. te Velde, E. Baerends: Towards an order-N DFT method, Theor. Chem. Acc. 99, 391–403 (1998)

    Google Scholar 

  112. L. Verslus, T. Ziegler: The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration, J. Chem. Phys. 88, 322–328 (1988)

    Article  Google Scholar 

  113. I.P. Omelyan, A. Kovalenko: Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. I. Microcanonical ensemble, J. Chem. Phys. 135, 11410–11419 (2011)

    Google Scholar 

  114. E. Barth, T. Schlick: Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN, J. Chem. Phys. 109, 1617–1632 (1998)

    Article  Google Scholar 

  115. J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, R.D. Skeel: Langevin stabilization of molecular dynamics, J. Chem. Phys. 114, 2090–2098 (2001)

    Article  Google Scholar 

  116. R.D. Skeel, J.A. Izaguirre: An impulse integrator for Langevin dynamics, Mol. Phys. 100, 3885–3891 (2002)

    Article  Google Scholar 

  117. Q. Ma, J.A. Izaguirre: Targeted mollified impulse: A multiscale stochastic integrator for long molecular dynamics simulations, Multiscale Model. Simul. 2, 1–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  118. S. Melchionna: Can short-range hybrids describe long-range-dependent properties? J. Chem, Phys. 127, 044108–44109 (2007)

    Google Scholar 

  119. G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein: Explicit reversible integrators for extended system dynamics, Mol. Phys. 87, 1117–1157 (1996)

    Article  Google Scholar 

  120. A. Cheng, K.M. Merz Jr.: Application of a multiple time step algorithm to biomolecular systems, J. Phys. Chem. B 103, 5396–5405 (1999)

    Article  Google Scholar 

  121. J. Komeiji: Ewald summation and multiple time step methods for molecular dynamics simulation of biological molecules, J. Mol. Struct. THEOCHEM 530, 237–243 (2000)

    Article  Google Scholar 

  122. W. Shinoda, M. Mikami: Rigid-body dynamics in the isothermal-isobaric ensemble: A test on the accuracy and computational efficiency, J. Comput. Chem. 24, 920–930 (2003)

    Article  Google Scholar 

  123. I.P. Omelyan, A. Kovalenko: Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. II. Canonical and isokinetic ensembles, J. Chem. Phys. 135, 234107–234112 (2011)

    Article  Google Scholar 

  124. P. Minary, G.J. Martyna, M.E. Tuckerman: Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics, J. Chem. Phys. 118, 2510–2526 (2003)

    Article  Google Scholar 

  125. P. Minary, M.E. Tuckerman, G.J. Martyna: Long time molecular dynamics for enhanced conformational sampling in biomolecular systems, Phys. Rev. Lett. 93, 150201–150204 (2004)

    Article  Google Scholar 

  126. J.B. Abrams, M.E. Tuckerman, G.J. Martyna: Equilibrium statistical mechanics, non-Hamiltonian molecular dynamics, and Novel applications from resonance-free timesteps to adiabatic free energy dynamics. In: Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1, Lecture Notes in Physics, Vol. 703, ed. by M. Ferrario, G. Ciccotti, K. Binder (Springer, Berlin, Heidelberg 2006) pp. 139–192

    Chapter  Google Scholar 

  127. D.J. Tobias, C.L. Brooks III: Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution: A comparison of theoretical results, J. Phys. Chem. 96, 3864–3870 (1992)

    Article  Google Scholar 

  128. D.S. Chekmarev, T. Ishida, R.M. Levy: Long-time conformational transitions of alanine dipeptide in aqueous solution: Continuous and discrete-state kinetic models, J. Phys. Chem. B 108, 19487–19495 (2004)

    Article  Google Scholar 

  129. D. Boda, W. Nonner, M. Valiskó, D. Henderson, B. Eisenberg, D. Gillespie: Steric selectivity in Na channels arising from protein polarization and mobile side chains, Biophys. J. 93, 1960–1980 (2007)

    Article  Google Scholar 

  130. D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie: The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel, J. Chem. Phys. 125, 034901–34911 (2006)

    Article  Google Scholar 

  131. D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie: Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel, Phys. Rev. Lett. 98, 168102–168104 (2007)

    Article  Google Scholar 

  132. N. Bocquet, H. Nury, M. Baaden, C. Le Poupon, J.-P. Changeux, M. Delarue, P.-J. Corringer: X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation, Nature 457, 111–114 (2009)

    Article  Google Scholar 

  133. Y. Weng, L. Yang, P.-J. Corringer, J.M. Sonner: Anesthetic sensitivity of the gloeobacter violaceus proton-gated ion channel, Anesth. Analg. 110, 59–63 (2010)

    Article  Google Scholar 

  134. J. Given: Liquid-state methods for random media: Random sequential adsorption, Phys. Rev. A 45, 816–824 (1992)

    Article  Google Scholar 

  135. J. Given, G. Stell: Comment on: Fluid distributions in two – phase random media: Arbitrary matrices, J. Chem. Phys. 97, 4573–4574 (1992)

    Article  Google Scholar 

  136. J. Given, G. Stell: The replica Ornstein–Zernike equations and the structure of partly quenched media, Physica A 209, 495–510 (1994)

    Article  Google Scholar 

  137. J. Given, G. Stell: Liquid-state theory for some non-equilibrium processes, Condens. Matter Theor. 8, 395–410 (1993)

    Article  Google Scholar 

  138. L.L. Lee: Chemical potentials based on the molecular distribution functions. An exact diagrammatical representation and the star function, J. Chem. Phys. 97, 8606–8616 (1992)

    Article  Google Scholar 

  139. M. Endo, T. Takeda, Y.J. Kim, K. Koshiba, K. Ishii: High power electric double layer capacitor (EDLC’s); From operating principle to pore size control in advanced carbons, Carbon Sci. 1, 117–128 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovalenko, A. (2017). Multiscale Modeling of Solvation. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics