Skip to main content

Equilibrium Statistical Mechanics, Non-Hamiltonian Molecular Dynamics, and Novel Applications from Resonance-Free Timesteps to Adiabatic Free Energy Dynamics

  • Chapter
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

Abstract

Levinthal’s paradox [1,2], first introduced in the 1960’s (early in the childhood of simulations in Chemistry), serves as a good illustration of the limitations we still face in the application of molecular dynamics (MD). Levinthal reasoned that if we were to assume that every residue in a polypeptide has a least two stable conformations, then a small 100 residue polypeptide would have 2100 possible states. If we were to study such a protein using traditional, state of the art, MD techniques, the native state would only be deduced after a little more than a billion years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Levinthal (1968) Are there pathways for protein folding. J. Chim. Phys. 65, p. 44

    Google Scholar 

  2. C. Levinthal, P. I. Debrunner, J. C. M. Tsibris, and E. Munck Eds. (1969) Proceedings of a Meeting held at Allerton House, Monticello, IL, University of Illinois Press, Urbana, p. 22

    Google Scholar 

  3. S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein (2004) Coarse grain models and the computer simulation of soft materials. J. Phys. Condens. Matter 16, p. R481

    Article  ADS  Google Scholar 

  4. M. E. Tuckerman, G. J. Martyna, and B. J. Berne (1990) Reversible multiple time scale molecular-dynamics. J. Chem. Phys. 1992, p. 97

    Google Scholar 

  5. P. Minary, G. J. Martyna, and M. E. Tuckerman (2003) Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics. J. Chem. Phys. 118, p. 2510

    Google Scholar 

  6. P. Minary, G. J. Martyna, and M. E. Tuckerman (2004) Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. Phys. Rev. Lett. 93, p. 150201

    Article  ADS  Google Scholar 

  7. D. McQuarrie (1976) Statistical Mechanics. Harper and Row, New York

    Google Scholar 

  8. K. F. Gauss (1829) Ueber ein neues algemeines Grundgesetz der Mechanik” (don’t ask how I was able to find this title! I also found a copy of the paper if anyone wants it). J. Reine Angew. Math IV, p. 232

    Google Scholar 

  9. H. Andersen (1980) Molecular-dynamics simulations at constant pressure and-or temperature. J. Chem. Phys. 72, p. 2384

    Article  ADS  Google Scholar 

  10. M. Tuckerman, C. Mundy, and G. Martyna (1999) On the classical statistical mechanics of non-Hamiltonian systems. Europhys. Lett. 45, p. 149

    Article  ADS  Google Scholar 

  11. Again, the more mathematically precise statement would be one relating the phase space volume form at t = 0 to that at an arbitrary time t

    Google Scholar 

  12. M. E. Tuckerman, Y. Liu, G. Ciccotti, and G. J. Martyna (2001) Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems. J. Chem. Phys. 115, p. 1678

    Article  ADS  Google Scholar 

  13. The covariant form of the conservation law is (∂/∂t+Lɛ)(fϖ)=0, where ϖis the Lie derivative and Lɛ is the volume n-form

    Google Scholar 

  14. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov (1985) Modern Geometry – Methods and Applications Part I. Springer-Verlag: 175 Fifth Ave, New York NY 10010

    Google Scholar 

  15. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov (1985) Modern Geometry – Methods and Applications Part II. Springer-Verlag: 175 Fifth Ave, New York NY 10010

    Google Scholar 

  16. B. Schutz (1987) Geometrical methods of mathematical physics. Cambridge University Press: The Pitt Building, Trumpington Street, Cambridge CB2 1RP

    Google Scholar 

  17. We have recently become aware of the fact that a generalization of the Liouville equation similar to the one presented was written down (although without proof) some time ago by Ramshaw [60]

    Google Scholar 

  18. K. Cho, J. D. Joannopoulos, and L. Kleinman (1993) Constant-temperature molecular-dynamics with momentum conservation. Phys. Rev. E 47, p. 3145

    Article  ADS  Google Scholar 

  19. G. Martyna (1994) Remarks on constant-temperature molecular-dynamics with momentum conservation. Phys. Rev. E 50, p. 3234

    Article  ADS  Google Scholar 

  20. M. Tuckerman, B. Berne, G. Martyna, and M. Klein (1993) Efficient moleculardynamics and hybrid monte-carlo algorithms for path-integrals. J. Chem. Phys. 99, p. 2796

    Article  ADS  Google Scholar 

  21. G. Martyna, M. Tuckerman, and M. Klein (1992) Nose–Hoover chains – the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, p. 2635

    Article  ADS  Google Scholar 

  22. M. E. Tuckerman, G. J. Martyna, and B. J. Berne (1990) Molecular-dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys. 93, p. 1287

    Article  ADS  Google Scholar 

  23. M. E. Tuckerman, B. J. Berne, and A. Rossi (1990) Molecular-dynamics algorithm for multiple time scales – systems with disparate masses. J. Chem. Phys. 94, p. 1465

    Article  ADS  Google Scholar 

  24. M. E. Tuckerman and B. J. Berne (1991) Molecular-dynamics algorithm for multiple time scales – systems with long-range forces. J. Chem. Phys. 94, p. 6811

    Article  ADS  Google Scholar 

  25. M. E. Tuckerman and B. J. Berne (1991) Molecular-dynamics in systems with multiple time scales – systems with stiff and soft degrees of freedom and with short and long-range forces. J. Chem. Phys. 95, p. 8362

    Article  ADS  Google Scholar 

  26. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987) Hybrid Monte Carlo. Phys. Lett. B 195, p. 216

    Article  ADS  Google Scholar 

  27. H. F. Trotter (1959) On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, p. 545

    Article  MATH  MathSciNet  Google Scholar 

  28. The decomposition of the forces for “fast” and “slow” components is presented. The same analysis can be performed for a system of “short” and “long” range forces, where we decompose the Liouville operator L into a reference system and a long range force contribution: iL = q∂/∂q + (F short + F Long )∂/∂p = (p/m ∂/∂q + F short ∂/∂q) + F long ∂/∂p = iL ref + iL long .

    Google Scholar 

  29. G. Martyna, M. Tuckerman, D. Tobias, and M. Klein (1996) Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, p. 1117

    Article  ADS  Google Scholar 

  30. Z. Zhu, D. I. Schuster, and M. E. Tuckerman (2003) Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Biochemistry 42, p. 1326

    Article  Google Scholar 

  31. T. Schlick, M. Mandziuk, R. D. Skeel, and K. Srinivas (1998) Nonlinear resonance artifacts in molecular dynamics simulations. J. Comput. Phys. 140, p. 1

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Q. Ma, J. A. Izaguirre, and R. D. Skeel (2003) Verlet-I/r-RESPA/Impulse is limited by nonlinear instabilities. SIAM J. Sci. Comput. 24, p. 1951

    Article  MATH  MathSciNet  Google Scholar 

  33. E. Barth, and T. Schlick (1998) Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN. J. Chem. Phys. 109, p. 1617

    Article  ADS  Google Scholar 

  34. A. Sandu and T. Schlick (2003) Masking resonance artifacts in force-splitting methods for biomolecular simulations by extrapolative Langevin dynamics. J. Comput. Phys. 151, p. R45

    MathSciNet  Google Scholar 

  35. S. Chin (2004) Dynamical multiple-time stepping methods for overcoming resonance instabilities. J. Chem. Phys. 120, p. 8

    Article  ADS  Google Scholar 

  36. S. Hammes-Schiffer (2002) Impact of enzyme motion on activity. Biochemistry 41, p. 13335

    Article  Google Scholar 

  37. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987) Hybrid Monte Carlo. Phys. Lett. B 195, p. 216

    Article  ADS  Google Scholar 

  38. Z. Zhu, M. E. Tuckerman, S. O. Samuelson, and G. J. Martyna (2002) Using novel variable transformations to enhance conformational sampling in molecular dynamics. Phys. Rev. Lett. 88, p. 100201

    Article  ADS  Google Scholar 

  39. L. Rosso and M. E. Tuckerman (2002) An adiabatic molecular dynamics method for the calculation of free energy profiles. Mol. Simul. 28, p. 91

    Article  Google Scholar 

  40. L. Rosso, P. Minary, Z. Zhu, and M. E. Tuckerman (2002) On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J. Chem. Phys. 116, p. 4389

    Article  ADS  Google Scholar 

  41. L. Rosso, J. B. Abrams, and M. E. Tuckerman (2005) Mapping the backbone dihedral free-energy surfaces in small peptides in solution using adiabatic free energy dynamics. J. Phys. Chem. B 109, p. 4162

    Article  Google Scholar 

  42. Y. Liu and M. E. Tuckerman (2000) Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble. J. Chem. Phys. 112, pp. 1685–1700

    Article  ADS  Google Scholar 

  43. M. E. Tuckerman, G. J. Martyna, M. L. Klein, and B. J. Berne (1993) Efficient molecular-dynamics and hybrid monte-carlo algorithms for path-integrals. J. Chem. Phys. 99, p. 2796

    Article  ADS  Google Scholar 

  44. M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello (1996) Efficient and general algorithms for path integral Car-Parrinello molecular dynamics. J. Chem. Phys. 104, p. 5579

    Article  ADS  Google Scholar 

  45. G. J. Martyna, A. Hughes, and M. E. Tuckerman (1999) Molecular dynamics algorithms for path integrals at constant pressure. J. Chem. Phys. 110, p. 3275

    Article  ADS  Google Scholar 

  46. A. D. MacKerell, D. Bashford, M. Bellott, J. R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, I. W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus (1998) J. Phys. Chem. B 102, p. 3586

    Article  Google Scholar 

  47. G. M. Torrie and J. P. Valleau (1974) Monte-carlo free-energy estimates using non-boltzmann sampling – application to subcritical lennard-jones fluid. Chem. Phys. Lett. 28, p. 578

    Article  ADS  Google Scholar 

  48. G. M. Torrie and J. P. Valleau (1977) Non-physical sampling distributions in monte-carlo free-energy estimation – umbrella sampling. J. Comput. Chem. 23, p. 187

    ADS  Google Scholar 

  49. J. Kushick and B. J. Berne (1977) Molecular Dynamics: Continuous Potentials, in Modern Theoretical Chemistry: Statistical Mechanics of Time Dependent Processes, ed. B. J. Berne, Plenum, New York

    Google Scholar 

  50. S. Kumar, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg (1992) The weighted histogram analysis method for free-energy calculations on biomolecules 1 the method. J. Comput. Chem. 12, p. 1011

    Article  Google Scholar 

  51. D. Wei, H. Guo, and D. R. Salahub (2001) Conformational dynamics of an alanine dipeptide analog: An ab initio molecular dynamics study. Phys. Rev. E 64, 011907

    Article  ADS  Google Scholar 

  52. S. Gnanakaran and R. M. Hochstrasser (2001) Conformational preferences and vibrational frequency distributions of short peptides in relation to multidimensional infrared spectroscopy. J. Am. Chem. Soc. 123, p. 12886

    Article  Google Scholar 

  53. Y. S. Kim, J. Wang, and R. M. Hochstrasser (2005) Two-dimensional infrared spectroscopy of the alanine dipeptide in aqueous solution. J. Phys. Chem. B 109, p. 7511

    Article  Google Scholar 

  54. B. C. Dian, A. Longarte, S. Mercier, D. A. Evans, D. J. Wales, and T. S. Zwier (2002) The infrared and ultraviolet spectra of single conformations of methylcapped dipeptides: N-acetyl tryptophan amide and N-acetyl tryptophan methyl amide. J. Chem. Phys. 117, p. 10686

    Article  Google Scholar 

  55. E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156, p. 472

    Article  ADS  Google Scholar 

  56. M. Sprik and G. Ciccotti (1998) Free energy from constrained molecular dynamics. J. Chem. Phys. 109, p. 7737

    Article  ADS  Google Scholar 

  57. C. Jarzynski (1997) Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, p. 2690

    Article  ADS  Google Scholar 

  58. D. A. Hendrix and C. Jarzynski (2001) A ‘fast growth’ method of computing free energy differences. J. Chem. Phys. 114, p. 5974

    Article  ADS  Google Scholar 

  59. A. Laio and M. Parrinello (2000) Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, p. 9840

    Google Scholar 

  60. J. D. Ramshaw (1986) Remarks on entropy and irreversibility in nonhamiltonian systems. Phys. Lett. A 116, p. 110

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Abrams, J., Tuckerman, M., Martyna, G. (2006). Equilibrium Statistical Mechanics, Non-Hamiltonian Molecular Dynamics, and Novel Applications from Resonance-Free Timesteps to Adiabatic Free Energy Dynamics. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_5

Download citation

Publish with us

Policies and ethics