Skip to main content

GTm_X: A New Version Global Weighted Mean Temperature Model

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 341))

Abstract

The atmospheric weighted mean temperature (Tm) determines the calculation accuracy of perceptible water value. Recently, a variety of global Tm empirical formulas and models have been developed using different databases, which have defects of limited spatial resolution. To address this issue, we establish a high-resolution global Tm model, GTm_X, using global reanalysis data in 2011–2013 provided by the ECMWF. GTm_X achieves a global spatial resolution of 1° × 1°. Its accuracy is verified using 2011–2013 Tm data from 703 global radiosonde stations. GTm_X exhibits higher accuracy than Bevis’s formula and other empirical models currently in use, including GTm_III, and GTm_N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Google Scholar 

  2. Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH 1(992) GPS meteorology: remote sensing of atmosphericwater vapor using the global positioning system. J geophys Res [Atmos] (1984–2012) 97(D14):15787–15801

    Google Scholar 

  3. Wang J, Zhang L, Dai A (2005) Global estimates of watervapor-weighted mean temperature of the atmosphere for GPS applications. J geophys Res [Atmos] (1984–2012) 110(D21) doi: 10.1029/2005JD006215

  4. Yu SJ, Liu LT (2009) Validation and analysis of the water-vaporweighted mean temperature from Tm-Ts relationship. Geomatics Inf Sci Wuhan Univ 34(6):741–744

    Google Scholar 

  5. Ross RJ, Rosenfeld S (1997) Estimating mean weighted temperature of the atmosphere for Global Positioning System applications. J geophys Res: [Atmos] (1984–2012) 102(D18) 21719–21730

    Google Scholar 

  6. Li JG, Mao JT (1999) The approach to remote sensing of water vapor based on GPS and linear regression Tm in eastern region of China. Acta Meteorol Sin 57(3):28–37.

    Google Scholar 

  7. Liu YX, Chen YQ, Liu JN (2000) Determination of weighted mean tropospheric temperature using ground meteorological measurement. J Wuhan Tech Univ Surv Map 25(5):400–404

    Google Scholar 

  8. Wang Y, Yang BY, Liu YP (2010) The study of the model about mean vapor pressure-weighted temperature of the atmosphere based on radiosonde. Sci Surv Map (2):112–113

    Google Scholar 

  9. Wang XY, Song LC, Dai, ZQ, Cao YC (2011) Feature analysis of weighted mean temperature Tm in Hong Kong. J Nanjing Univ Inform Sci Technol Nat Sci Edn 1 47–52

    Google Scholar 

  10. Bevis M, Businger S, Chiswell S (1995) Earth-based GPS meteorology: an overview, American Geophysical Union 1995 Fall Meeting (supplement), EOS. Trans Am geophys Un 76(46)

    Google Scholar 

  11. Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683

    Article  MATH  Google Scholar 

  12. Lagler K, Schindelegger M, B¨ohm J, Kr´asn´a H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073

    Google Scholar 

  13. Yao YB, Zhu S, Yue SQ (2012) A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J Geod 86:1125–1135

    Article  Google Scholar 

  14. Yao YB, Zhang B, Yue SQ, Xu CQ, Peng WF (2013) Global empirical model for mapping zenith wet delays onto precipitable water. J Geod 87:439–448

    Article  Google Scholar 

  15. Yao Y, Xu C, Zhang B, Cao N (2014) GTm-III: a new global empirical model for mapping zenith wet delays onto precipitable water vapour. Geophys J Int 197(1):202–212

    Article  Google Scholar 

  16. Chen P, Yao W, Zhu X (2014) Realization of global empirical model for mapping zenith wet delays onto precipitable water using NCEP re-analysis data. Geophys J Int 198(3):1748–1757

    Article  Google Scholar 

  17. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, P., Yao, W. (2015). GTm_X: A New Version Global Weighted Mean Temperature Model. In: Sun, J., Liu, J., Fan, S., Lu, X. (eds) China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II. Lecture Notes in Electrical Engineering, vol 341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46635-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46635-3_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46634-6

  • Online ISBN: 978-3-662-46635-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics