Skip to main content

Features extraction for classification of focal and non-focal EEG signals

  • Conference paper
  • First Online:
Information Science and Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 339))

Abstract

The electroencephalogram (EEG) is most often used signal to detect epileptic seizures. For a successful epilepsy surgery, it is very important to localize epileptogenic area. In this paper, a new method is proposed to classify focal and non-focal EEG signals. EEG signal is decomposed by empirical mode decomposition (EMD). The average Renyi entropy and the average negentropy of IMFs for EEG signals have been computed as features. The class discrimination ability of these features are quantified using Kruskal—Wallis statistical test. These features are set to input in neural network classifier for classification of focal and non-focal EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of focal and non-focal EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrzejak, R.G., Schindler, K., and Rummel, C.: Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Physical Review E 86, 046206 (2012).

    Google Scholar 

  2. Pati, S., and Alexopoulos, A.V.: Pharmacoresistant epilepsy: From pathogenesis to current and emerging therapies. Cleveland Clinic Journal of Medicine 77, 457-467 (2010).

    Google Scholar 

  3. Seeck, M., Lazeyras, F., Michel, C.M., Blanke, O., Gericke, C.A., Ives, J., Delavelle, J., Golay, X., Haenggeli, C.A., Tribolet, N.D., and Landis, T.: Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalography and Clinical Neurophysiology 106, 508-512 (1998).

    Google Scholar 

  4. Savic, I., Thorell, J.O., and Roland, P.: Flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 36, 1225-1232 (1995).

    Google Scholar 

  5. Newton, M.R., Berkovic, S.F., Austin, M.C., Rowe, C.C., McKay, W.J., and Bladin, P.F.: SPECT in the localisation of extratemporal and temporal seizure foci. Journal of Neurology, Neurosurgery & Psychiatry 59, 26-30 (1995).

    Google Scholar 

  6. Spanaki, M.V., Spencer, S.S., Corsi, M., MacMullan, J., Seibyl, J., and Zubal, I.G.: Determining surgical candidacy in temporal lobe epilepsy. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 40, 730-736 (1999).

    Google Scholar 

  7. Henry,T.R., and Heertum, R.L.V.: Positron emission tomography and single photon emission computed tomography in epilepsy care. Seminars in Nuclear Medicine 33, 88-104 (2003).

    Google Scholar 

  8. Knowlton, R.C., Elgavish, R.A., Bartolucci, A., Ojha, B., Limdi, N., Blount, J., Burneo, J.G., Hoef, L.V., Paige, L., Faught, E., Kankirawatana, P., Riley, K., and Kuzniecky, R.: Functional imaging: II. prediction of epilepsy surgery outcome. Annals of Neurology 64, 35-41 (2008).

    Google Scholar 

  9. Zhu, G., Li, Y., Wen, P.P., Wang, S, and Min Xi,: Epileptogenic focus detection in intracranial EEG based on delay permutation entropy. International Symposium on Computational Models For Life Sciences 1559, 31-36 (2013)

    Google Scholar 

  10. Sharma, R., Pachori, R.B., and Gautam, S.: Empirical mode decomposition based classification of focal and non-focal EEG signals. International Conference on Medical Biometrics, 135-140 (2014)

    Google Scholar 

  11. Flandrin, P., Rilling, G., and Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters 11, 112-114 (2004)

    Google Scholar 

  12. Renyi, A.: On measures of entropy and information. Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability 1, 547-561 (1961)

    Google Scholar 

  13. Leon, B.: Negentropy principle of information. Journal of Applied Physics 24, 1152-1163 (1953)

    Google Scholar 

  14. Yegnanarayana, B.: Artificial Neural Networks, Prentice-Hall of India, New Delhi, (1999)

    Google Scholar 

  15. MacKay, D.J.C.: Bayesian interpolation, Neural Computation 4, 415-447 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Bajaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rai, K., Bajaj, V., Kumar, A. (2015). Features extraction for classification of focal and non-focal EEG signals. In: Kim, K. (eds) Information Science and Applications. Lecture Notes in Electrical Engineering, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46578-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46578-3_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46577-6

  • Online ISBN: 978-3-662-46578-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics