Skip to main content

Cold-Adapted Yeasts in Alpine and Apennine Glaciers

  • Chapter
  • First Online:
Cold-adapted Yeasts
  • 1482 Accesses

Abstract

Alpine and Apennine glaciers contain only a small part of the total ice mass existing on Earth and it is well known that these ice masses probably are going to disappear in the next future. The study of biodiversity and ecology of cold-adapted yeasts living in cold habitats of Alpine and Apennine glaciers (supraglacial and subglacial sediments, cryoconite, snow, ice, and melt water) represents a contribution to obtain a better defined picture of the microbial ecology of these peculiar ecosystems. Most frequently isolated yeast species belonged to the genera Cryptococcus (mainly of the order Filobasidiales) and Rhodotorula (mainly of the class Cystobasidiomycetes). The majority of strains exhibited psychrotolerant characteristics and some of them were able to secrete extracellular hydrolytic cold-active enzymes. From an ecological point of view, some yeasts species could be subjected to an in situ selective enrichment in both supraglacial and subglacial sediments and cryoconite. Due to their heterotrophic nature, the possible role of cold-adapted yeasts in biogeochemical cycling through the mineralization of organic matter in cold environments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedmann (ed) Antarctic microbiology. Wiley, New York, pp 265–295

    Google Scholar 

  • Abyzov SS, Bobin NE, Koudryashov BB (1982) Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers. Biol Bull Acad Sci USSR 9:558–564

    Google Scholar 

  • Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM, Ivanov MV (2001) Microflora of the basal strata at Antarctic ice core above the Vostok Lake. Adv Space Sci 28:701–706

    Article  CAS  Google Scholar 

  • Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterisation of the snow cover at Spitsbergen, Svalbard. FEMS Microbiol Ecol 59:255–264

    Article  PubMed  CAS  Google Scholar 

  • Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27:219–225

    Article  PubMed  Google Scholar 

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol 15:955–960

    Article  Google Scholar 

  • Anesio AM, Sattler B, Foreman C, Telling J, Hodson A, Trantner M, Psenner R (2010) Carbon fluxes through bacterial communities on glacier surface. Ann Glaciol 51:32–40

    Article  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Benn DI, Evans DJA (1998) Glacier and glaciation. Arnold, London, pp 212–239

    Google Scholar 

  • Bergauer P, Fonteyne PA, Nolard N, Schinner F, Margesin R (2005) Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59:909–918

    Article  PubMed  CAS  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  PubMed  CAS  Google Scholar 

  • Brunner I, Plotze M, Rieder S, Zumsteg A, Furrer G, Frey B (2011) Pioneering fungi from the Damma glacier forefield in the Swiss Alps can promote granite weathering. Geobiology 9:266–279

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuw J Microbiol 91:277–289

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, daptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  PubMed  CAS  Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Lett 82:254–267

    Article  CAS  Google Scholar 

  • Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl 18:637–648

    Article  PubMed  Google Scholar 

  • Castello JD, Rogers SO (2005) Life in ancient ice. Princeton University Press, Princeton

    Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16 S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Krivko BH II, Reeve JN (2003a) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003b) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch K, Lyons WB, Tsapin AI, Priscu J (2006) Limnological conditions in subglacial Lake Vostok. Limnol Oceanogr 51:2485–2501

    Article  Google Scholar 

  • Connell LB, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  PubMed  CAS  Google Scholar 

  • De Angelis M, Gaudichet A (1991) Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. Tellus 43B:61–75

    Google Scholar 

  • de Garcia V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia. Argentina FEMS Microbiol Ecol 59:331–341

    Article  Google Scholar 

  • Deming WJ (2002) Psychrophiles and Polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microbial Ecol 47:329–340

    Article  CAS  Google Scholar 

  • Fonseca A, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1661–1738

    Google Scholar 

  • Gildemacher P, Heijne B, Silvestri M, Houbraken J, Hoekstra E, Boekhout T (2006) Interactions between yeasts, fungicides and apple fruit russeting. FEMS Yeast Res 6:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Gildemacher PR, Heijne B, Houbraken J, Vromans T, Hoekstra ES, Boekhout T (2004) Can phyllosphere yeasts explain the effect of scab fungicides on russeting of Elstar apples? Eur J Plant Pathol 110:929–937

    Article  CAS  Google Scholar 

  • Herzberg M, Fischer R, Titze A (2002) Conflicting results obtained by RAPD-PCR and large-subunit rDNA sequences in determining and comparing yeast strains isolated from flowers: a comparison of two methods. Int J Syst Evol Microbiol 52:1423–1433

    Article  PubMed  CAS  Google Scholar 

  • Hodson A (2006) Biogeochemistry of snowmelt in an Antarctic glacial ecosystem. Water Resources Res 42 (11) doi: 10.1029/2005WR004311

  • Hodson A, Anesio AM, Trantner M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monograph 78:41–67

    Article  Google Scholar 

  • Hodson A, Cameron K, Bøggild C, Irvine-Fynn T, Langford H, Pearce D, Banwart S (2010) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349–362

    Article  CAS  Google Scholar 

  • Lazzaro A, Brankatschk R, Zeyer J (2012) Seasonal dynamics of nutrients and bacterial communities in unvegetated alpine glacier forefields. Appl Soil Ecol 53:10–22

    Article  Google Scholar 

  • Lee YM, Kim S-Y, Jung J, Kim EH, Cho KH, Schinner F, Margesin R, Hong SG, Lee HK (2011) Cultured bacterial diversity and human impact on alpine glacier cryoconite. J Microbiol 49:355–362

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Moline M, Sampaio JP, van Broock M (2009) Yeasts from high-altitude lakes: infuence of UV radiation. FEMS Microbiol Ecol 69:353–362

    Article  PubMed  CAS  Google Scholar 

  • MacDonell S, Fitzsimons S (2008) The formation and hydrological significance of cryoconite holes. Prog Phys Geogr 32:595–610

    Article  Google Scholar 

  • Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262

    Article  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005a) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Fonteyne PA, Redl B (2005b) Low-temperature biodegradation oh high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species from alpine environments. Int J Syst Evol Microbiol 57:2179–2184

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Fell JF (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 58:2977–2982

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93

    Article  Google Scholar 

  • Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 31–50

    Chapter  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    Article  PubMed  CAS  Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512

    Article  PubMed  CAS  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edn. Pergamon, Oxford

    Google Scholar 

  • Paterson WSB (2002) The physics of glaciers. Butterworth-Heinemann, Elsevier Science, Burlington, pp 159–172

    Google Scholar 

  • Pecci M, D’Agata C, Smiraglia C (2008) Ghiacciaio del Calderone (Apennines, Italy): the mass balance of a shrinking Mediterranean glacier. Geogr Fis Din Quat 31:55–62

    Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep, Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein CD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Sampaio JP (2011) Cystofilobasidium Oberwinkler & Bandoni (1983). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1423–1432

    Google Scholar 

  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    Article  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microb 75:7519–7526

    Article  CAS  Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583

    Article  Google Scholar 

  • Skidmore M, Foght JM, Sharp MJ (2000) Microbial life beneath a high arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Skidmore ML, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microorganisms in chemical weathering processes. Appl Environ Microbiol 71:6986–6997

    Article  PubMed  CAS  Google Scholar 

  • Stibal M, Trantner M, Benning LG, Rehak J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochtonous organic carbon input. Environ Microbiol 10:2172–2178

    Article  PubMed  CAS  Google Scholar 

  • Stibal M, Elster J, Sabacka M, Kastovska K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 59:265–273

    Article  PubMed  CAS  Google Scholar 

  • Stibal M, Sabacka M, Zarsky J (2012) Biological processes on glacier and ice sheet surfaces. Nat Geosci 5:771–774

    Article  CAS  Google Scholar 

  • Takeuchi N, Kohshima S, Seko K (2001) Structure, formation and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122

    Article  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold adapted yeasts from Antarctica and the Italian Alps. Description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  PubMed  CAS  Google Scholar 

  • Tieber A, Lettner H, Bossew P, Hubmer A, Sattler B, Hofmann W (2009) Accumulation of anthropogenic radionuclides in cryoconite on alpine glaciers. J Environ Radioact 100:590–598

    Article  PubMed  CAS  Google Scholar 

  • Tranter M (2005) Geochemical weathering in glacial and proglacial environments. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 5. Elsevier, London, pp 189–205

    Google Scholar 

  • Tranter M, Sharp MJ, Lamb H, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland: a new model. Hydrol Process 16:959–993

    Article  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Turchetti B, Thomas-Hall SR, Connell LB, Branda E, Buzzini P, Theelen B, Muller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586

    Article  PubMed  CAS  Google Scholar 

  • Turchetti B, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Onofri A, Buzzini P (2013) Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol (in press) doi: 10.1111/1574-6941.12164

  • Uetake J, Yoshimura Y, Nagatsuka N, Kanda H (2012) Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska). FEMS Microbiol Ecol 82:1–8

    Article  Google Scholar 

  • Vishniac HS (1985) Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 77:149–153

    Article  PubMed  CAS  Google Scholar 

  • Vishniac HS (2006) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103

    Article  PubMed  Google Scholar 

  • Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov, and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from antarctic soils. Int J Syst Bacteriol 42:547–553

    Article  Google Scholar 

  • Vishniac HS, Onofri S (2002) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. A van Leeuwenhoek 83:231–233

    Article  Google Scholar 

  • Wadham JL, Tranter M, Tulaczyk S, Sharp M (2008) Subglacial methanogenesis: a potential climatic amplifier? Global Biogeochem Cycles 22, GB2021

    Google Scholar 

  • Wharton RA Jr, Vinyard WC, Parker BC, Simmons GM Jr, Seaburg KG (1981) Algae in cryoconit holes on Canada glacier in southern Victoria Land, Antarctica. Phycologia 20:208–211

    Article  Google Scholar 

  • Wharton JRA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 8:499–503

    Article  Google Scholar 

  • Xiang SR, Shang TC, Chen Y, Yao TD (2009) Deposition and post deposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol Ecol 70:165–176

    Article  CAS  Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504

    Article  Google Scholar 

  • Zumsteg A, Luster K, Göransson H, Smittenberg RH, Brunner I, Bernasconi SM, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Turchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turchetti, B., Goretti, M., Buzzini, P., Margesin, R. (2014). Cold-Adapted Yeasts in Alpine and Apennine Glaciers. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_5

Download citation

Publish with us

Policies and ethics