Skip to main content

Physiology of the Developing Kidney: Potassium Homeostasis and Its Disorder

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Potassium is the most abundant intracellular cation. Approximately 98 % of the total body potassium content is located within cells, primarily muscle, where its concentration ranges from 100 to 150 mEq/l; the remaining 2 % resides in the extracellular fluid, where the potassium concentration is tightly regulated within a narrow range (3.5–5.0 mEq/l in the adult). The ratio of the intra- to extracellular potassium concentration determines, in large part, the resting membrane potential and is thus critical for normal function of electrically excitable cells, including nerve and muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler S, Fraley DS. Potassium and intracellular pH. Kidney Int. 1977;11(6):433–42.

    Article  PubMed  CAS  Google Scholar 

  2. Bygrave FL. The ionic environment and metabolic control. Nature. 1967;214(5089):667–71.

    Article  PubMed  CAS  Google Scholar 

  3. Lubin M. Intracellular potassium and macromolecular synthesis in mammalian cells. Nature. 1967;213(5075):451–3.

    Article  PubMed  CAS  Google Scholar 

  4. Lopez-Rivas A, Adelberg EA, Rozengurt E. Intracellular K+ and the mitogenic response of 3T3 cells to peptide factors in serum-free medium. Proc Natl Acad Sci U S A. 1982;79(20):6275–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Lang F, et al. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 2005;205(3):147–57.

    Article  PubMed  CAS  Google Scholar 

  6. Schmidt-Nielsen B. Comparative physiology of cellular ion and volume regulation. J Exp Zool. 1975;194(1):207–19.

    Article  PubMed  CAS  Google Scholar 

  7. Weiner MW, et al. Renal mitochondrial enzymes in potassium depletion. Am J Physiol. 1971;221(2):613–7.

    PubMed  CAS  Google Scholar 

  8. Giebisch G. Renal potassium transport: mechanisms and regulation. Am J Physiol. 1998;274(5 Pt 2):F817–33.

    PubMed  CAS  Google Scholar 

  9. Holbrook JT, et al. Sodium and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr. 1984;40(4):786–93.

    PubMed  CAS  Google Scholar 

  10. Butte NF, et al. Body composition during the first 2 years of life: an updated reference. Pediatr Res. 2000;47(5):578–85.

    Article  PubMed  CAS  Google Scholar 

  11. Flynn MA, et al. Total body potassium in normal children. Pediatr Res. 1972;6(4):239–45.

    Article  PubMed  CAS  Google Scholar 

  12. Dickerson JW, Widdowson EM. Chemical changes in skeletal muscle during development. Biochem J. 1960;74:247–57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Rutledge MM, et al. A longitudinal study of total body potassium in normal breastfed and bottle-fed infants. Pediatr Res. 1976;10(2):114–7.

    Article  PubMed  CAS  Google Scholar 

  14. Dorup I, Clausen T. Effects of potassium deficiency on growth and protein synthesis in skeletal muscle and the heart of rats. Br J Nutr. 1989;62(2):269–84.

    Article  PubMed  CAS  Google Scholar 

  15. Wilde WS. Potassium. In: Bronner CLCF, editor. Mineral metabolism: an advanced treatise, vol. II. New York: Academic; 1962. p. 73–107.

    Google Scholar 

  16. Delgado MM, et al. Sodium and potassium clearances by the maturing kidney: clinical-molecular correlates. Pediatr Nephrol. 2003;18(8):759–67.

    Article  PubMed  Google Scholar 

  17. Sulyok E, et al. Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate. 1979;35(1–2):60–5.

    Article  PubMed  CAS  Google Scholar 

  18. Satlin LM. Regulation of potassium transport in the maturing kidney. Semin Nephrol. 1999;19(2):155–65.

    PubMed  CAS  Google Scholar 

  19. Mohammed T, et al. Mechanisms of potassium transfer across the dually perfused rat placenta. Am J Physiol. 1993;265(2 Pt 2):R341–7.

    PubMed  CAS  Google Scholar 

  20. Serrano CV, Talbert LM, Welt LG. Potassium deficiency in the pregnant dog. J Clin Invest. 1964;43:27–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Dancis J, Springer D. Fetal homeostasis in maternal malnutrition: potassium and sodium deficiency in rats. Pediatr Res. 1970;4(4):345–51.

    Article  PubMed  CAS  Google Scholar 

  22. DeFronzo RA, et al. Influence of basal insulin and glucagon secretion on potassium and sodium metabolism. Studies with somatostatin in normal dogs and in normal and diabetic human beings. J Clin Invest. 1978;61(2):472–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. DeFronzo RA, et al. Impaired renal tubular potassium secretion in sickle cell disease. Ann Intern Med. 1979;90(3):310–6.

    Article  PubMed  CAS  Google Scholar 

  24. Bia MJ, DeFronzo RA. Extrarenal potassium homeostasis. Am J Physiol. 1981;240(4):F257–68.

    PubMed  CAS  Google Scholar 

  25. Geering K. The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr. 2001;33(5):425–38.

    Article  PubMed  CAS  Google Scholar 

  26. Benziane B, Chibalin AV. Frontiers: skeletal muscle sodium pump regulation: a translocation paradigm. Am J Physiol Endocrinol Metab. 2008;295(3):E553–8.

    Article  PubMed  CAS  Google Scholar 

  27. Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev. 2003;83(4):1269–324.

    Article  PubMed  CAS  Google Scholar 

  28. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000;279(3):C541–66.

    PubMed  CAS  Google Scholar 

  29. Geering K. FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol. 2006;290(2):F241–50.

    Article  PubMed  CAS  Google Scholar 

  30. Horster M. Embryonic epithelial membrane transporters. Am J Physiol Renal Physiol. 2000;279(6):F982–96.

    PubMed  CAS  Google Scholar 

  31. Schmitt R, et al. Developmental expression of sodium entry pathways in rat nephron. Am J Physiol. 1999;276(3 Pt 2):F367–81.

    PubMed  CAS  Google Scholar 

  32. Brion LP, et al. Early hyperkalaemia in very low birthweight infants in the absence of oliguria. Arch Dis Child. 1989;64(2):270–2.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Leslie GI, Carman G, Arnold JD. Early neonatal hyperkalaemia in the extremely premature newborn infant. J Paediatr Child Health. 1990;26(1):58–61.

    Article  PubMed  CAS  Google Scholar 

  34. Gruskay J, et al. Nonoliguric hyperkalemia in the premature infant weighing less than 1000 grams. J Pediatr. 1988;113(2):381–6.

    Article  PubMed  CAS  Google Scholar 

  35. Lorenz JM, Kleinman LI, Markarian K. Potassium metabolism in extremely low birth weight infants in the first week of life. J Pediatr. 1997;131(1 Pt 1):81–6.

    Article  PubMed  CAS  Google Scholar 

  36. Sato K, et al. Internal potassium shift in premature infants: cause of nonoliguric hyperkalemia. J Pediatr. 1995;126(1):109–13.

    Article  PubMed  CAS  Google Scholar 

  37. Shaffer SG, et al. Hyperkalemia in very low birth weight infants. J Pediatr. 1992;121(2):275–9.

    Article  PubMed  CAS  Google Scholar 

  38. Stefano JL, et al. Decreased erythrocyte Na+, K+-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr. 1993;122(2):276–84.

    Article  PubMed  CAS  Google Scholar 

  39. Uga N, et al. Antenatal steroid treatment prevents severe hyperkalemia in very low-birthweight infants. Pediatr Int. 2003;45(6):656–60.

    Article  PubMed  CAS  Google Scholar 

  40. Omar SA, et al. Effect of prenatal steroids on potassium balance in extremely low birth weight neonates. Pediatrics. 2000;106(3):561–7.

    Article  PubMed  CAS  Google Scholar 

  41. McCaughan D. Hazards of non-prescription potassium supplements. Lancet. 1984;1(8375):513–4.

    Article  PubMed  CAS  Google Scholar 

  42. Zierler KL, Rabinowitz D. Effect of very small concentrations of insulin on forearm metabolism. Persistence of its action on potassium and free fatty acids without its effect on glucose. J Clin Invest. 1964;43:950–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Hundal HS, et al. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem. 1992;267(8):5040–3.

    PubMed  CAS  Google Scholar 

  44. Lavoie L, et al. Insulin-induced translocation of Na+-K+-ATPase subunits to the plasma membrane is muscle fiber type specific. Am J Physiol. 1996;270(5 Pt 1):C1421–9.

    PubMed  CAS  Google Scholar 

  45. Omatsu-Kanbe M, Kitasato H. Insulin stimulates the translocation of Na+/K+-dependent ATPase molecules from intracellular stores to the plasma membrane in frog skeletal muscle. Biochem J. 1990;272(3):727–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Marette A, et al. Insulin increases the Na+-K+-ATPase alpha 2-subunit in the surface of rat skeletal muscle: morphological evidence. Am J Physiol. 1993;265(6 Pt 1):C1716–22.

    PubMed  CAS  Google Scholar 

  47. Kanbe M, Kitasato H. Stimulation of Na, K-ATPase activity of frog skeletal muscle by insulin. Biochem Biophys Res Commun. 1986;134(2):609–16.

    Article  PubMed  CAS  Google Scholar 

  48. Lytton J. Insulin affects the sodium affinity of the rat adipocyte (Na+, K+)-ATPase. J Biol Chem. 1985;260(18):10075–80.

    PubMed  CAS  Google Scholar 

  49. Sargeant RJ, Liu Z, Klip A. Action of insulin on Na+-K+-ATPase and the Na+-K+-2Cl- cotransporter in 3T3-L1 adipocytes. Am J Physiol. 1995;269(1 Pt 1):C217–25.

    PubMed  CAS  Google Scholar 

  50. Sweeney G, Klip A. Regulation of the Na+/K+-ATPase by insulin: why and how? Mol Cell Biochem. 1998;182(1–2):121–33.

    Article  PubMed  CAS  Google Scholar 

  51. Feraille E, et al. Insulin enhances sodium sensitivity of Na-K-ATPase in isolated rat proximal convoluted tubule. Am J Physiol. 1994;267(1 Pt 2):F55–62.

    PubMed  CAS  Google Scholar 

  52. Hiatt N, Davidson MB, Bonorris G. The effect of potassium chloride infusion on insulin secretion in vivo. Horm Metab Res. 1972;4(2):64–8.

    Article  PubMed  CAS  Google Scholar 

  53. Pettit GW, Vick RL, Swander AM. Plasma K plus and insulin: changes during KCl infusion in normal and nephrectomized dogs. Am J Physiol. 1975;228(1):107–9.

    PubMed  CAS  Google Scholar 

  54. DeFronzo RA, Bia M, Birkhead G. Epinephrine and potassium homeostasis. Kidney Int. 1981;20(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  55. Brown RS. Extrarenal potassium homeostasis. Kidney Int. 1986;30(1):116–27.

    Article  PubMed  CAS  Google Scholar 

  56. Salem MM, Rosa RM, Batlle DC. Extrarenal potassium tolerance in chronic renal failure: implications for the treatment of acute hyperkalemia. Am J Kidney Dis. 1991;18(4):421–40.

    Article  PubMed  CAS  Google Scholar 

  57. Todd EP, Vick RL. Kalemotropic effect of epinephrine: analysis with adrenergic agonists and antagonists. Am J Physiol. 1971;220(6):1964–9.

    PubMed  CAS  Google Scholar 

  58. Williams ME, et al. Impairment of extrarenal potassium disposal by alpha-adrenergic stimulation. N Engl J Med. 1984;311(3):145–9.

    Article  PubMed  CAS  Google Scholar 

  59. Williams ME, et al. Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med. 1985;312(13):823–7.

    Article  PubMed  CAS  Google Scholar 

  60. Rosa RM, et al. Adrenergic modulation of extrarenal potassium disposal. N Engl J Med. 1980;302(8):431–4.

    Article  PubMed  CAS  Google Scholar 

  61. Angelopoulous M, et al. In vitro analysis of the Na+-K+ ATPase activity in neonatal and adult red blood cells. Biol Neonate. 1996;69(3):140–5.

    Article  PubMed  CAS  Google Scholar 

  62. Gillzan KM, Stewart AG. The role of potassium channels in the inhibitory effects of beta 2-adrenoceptor agonists on DNA synthesis in human cultured airway smooth muscle. Pulm Pharmacol Ther. 1997;10(2):71–9.

    Article  PubMed  CAS  Google Scholar 

  63. Clausen T, Flatman JA. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol. 1977;270(2):383–414.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Mandelberg A, et al. Salbutamol metered-dose inhaler with spacer for hyperkalemia: how fast? How safe? Chest. 1999;115(3):617–22.

    Article  PubMed  CAS  Google Scholar 

  65. Singh BS, et al. Efficacy of albuterol inhalation in treatment of hyperkalemia in premature neonates. J Pediatr. 2002;141(1):16–20.

    Article  PubMed  CAS  Google Scholar 

  66. Helfrich E, de Vries TW, van Roon EN. Salbutamol for hyperkalaemia in children. Acta Paediatr. 2001;90(11):1213–6.

    Article  PubMed  CAS  Google Scholar 

  67. Allon M. Hyperkalemia in end-stage renal disease: mechanisms and management. J Am Soc Nephrol. 1995;6(4):1134–42.

    PubMed  CAS  Google Scholar 

  68. McClure RJ, Prasad VK, Brocklebank JT. Treatment of hyperkalaemia using intravenous and nebulised salbutamol. Arch Dis Child. 1994;70(2):126–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Semmekrot BA, Monnens LA. A warning for the treatment of hyperkalaemia with salbutamol. Eur J Pediatr. 1997;156(5):420.

    PubMed  CAS  Google Scholar 

  70. Shortland D, Trounce JQ, Levene MI. Hyperkalaemia, cardiac arrhythmias, and cerebral lesions in high risk neonates. Arch Dis Child. 1987;62(11):1139–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Yeh TF, et al. Renal response to frusemide in preterm infants with respiratory distress syndrome during the first three postnatal days. Arch Dis Child. 1985;60(7):621–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Lui K, et al. Treatment with hypertonic dextrose and insulin in severe hyperkalaemia of immature infants. Acta Paediatr. 1992;81(3):213–6.

    Article  PubMed  CAS  Google Scholar 

  73. Lei J, Mariash CN, Ingbar DH. 3,3′,5-Triiodo-l-thyronine up-regulation of Na, K-ATPase activity and cell surface expression in alveolar epithelial cells is Src kinase- and phosphoinositide 3-kinase-dependent. J Biol Chem. 2004;279(46):47589–600.

    Article  PubMed  CAS  Google Scholar 

  74. Lei J, et al. T3 increases Na-K-ATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L749–54.

    Article  PubMed  CAS  Google Scholar 

  75. Nakhoul F, Thompson CB, McDonough AA. Developmental change in Na, K-ATPase alpha1 and beta1 expression in normal and hypothyroid rat renal cortex. Am J Nephrol. 2000;20(3):225–31.

    Article  PubMed  CAS  Google Scholar 

  76. Adrogue HJ, Madias NE. Changes in plasma potassium concentration during acute acid–base disturbances. Am J Med. 1981;71(3):456–67.

    Article  PubMed  CAS  Google Scholar 

  77. Burnell JM, et al. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest. 1956;35(9):935–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Magner PO, et al. The plasma potassium concentration in metabolic acidosis: a re-evaluation. Am J Kidney Dis. 1988;11(3):220–4.

    Article  PubMed  CAS  Google Scholar 

  79. Oster JR, Perez GO, Vaamonde CA. Relationship between blood pH and potassium and phosphorus during acute metabolic acidosis. Am J Physiol. 1978;235(4):F345–51.

    PubMed  CAS  Google Scholar 

  80. Fulop M. Serum potassium in lactic acidosis and ketoacidosis. N Engl J Med. 1979;300(19):1087–9.

    Article  PubMed  CAS  Google Scholar 

  81. Graber M. A model of the hyperkalemia produced by metabolic acidosis. Am J Kidney Dis. 1993;22(3):436–44.

    Article  PubMed  CAS  Google Scholar 

  82. Fraley DS, Adler S. Correction of hyperkalemia by bicarbonate despite constant blood pH. Kidney Int. 1977;12(5):354–60.

    Article  PubMed  CAS  Google Scholar 

  83. Blumberg A, et al. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85(4):507–12.

    Article  PubMed  CAS  Google Scholar 

  84. Cooperman LH. Succinylcholine-induced hyperkalemia in neuromuscular disease. JAMA. 1970;213(11):1867–71.

    Article  PubMed  CAS  Google Scholar 

  85. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158–69.

    Article  PubMed  CAS  Google Scholar 

  86. Hertz P, Richardson JA. Arginine-induced hyperkalemia in renal failure patients. Arch Intern Med. 1972;130(5):778–80.

    Article  PubMed  CAS  Google Scholar 

  87. Perazella MA, Biswas P. Acute hyperkalemia associated with intravenous epsilon-aminocaproic acid therapy. Am J Kidney Dis. 1999;33(4):782–5.

    Article  PubMed  CAS  Google Scholar 

  88. Ponce SP, et al. Drug-induced hyperkalemia. Medicine (Baltimore). 1985;64(6):357–70.

    Article  CAS  Google Scholar 

  89. Ethier JH, et al. The transtubular potassium concentration in patients with hypokalemia and hyperkalemia. Am J Kidney Dis. 1990;15(4):309–15.

    Article  PubMed  CAS  Google Scholar 

  90. Rodriguez-Soriano J, et al. Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int. 1981;20(6):700–4.

    Article  PubMed  CAS  Google Scholar 

  91. Hartnoll G, Betremieux P, Modi N. Body water content of extremely preterm infants at birth. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F56–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Modi N, et al. Postnatal weight loss and contraction of the extracellular compartment is triggered by atrial natriuretic peptide. Early Hum Dev. 2000;59(3):201–8.

    Article  PubMed  CAS  Google Scholar 

  93. Gurkan S, et al. Potassium transport in the maturing kidney. Pediatr Nephrol. 2007;22(7):915–25.

    Article  PubMed  Google Scholar 

  94. Tudvad F, Mc NH, Barnett HL. Renal response of premature infants to administration of bicarbonate and potassium. Pediatrics. 1954;13(1):4–16.

    PubMed  CAS  Google Scholar 

  95. Lorenz JM, Kleinman LI, Disney TA. Renal response of newborn dog to potassium loading. Am J Physiol. 1986;251(3 Pt 2):F513–9.

    PubMed  CAS  Google Scholar 

  96. McCance R, Widdowson EM. The response of the new-born piglet to an excess of potassium. J Physiol. 1958;141(1):88–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Lelievre-Pegorier M, et al. Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol. 1983;245(1):F15–21.

    PubMed  CAS  Google Scholar 

  98. Kleinman LI, Banks RO. Segmental nephron sodium and potassium reabsorption in newborn and adult dogs during saline expansion. Proc Soc Exp Biol Med. 1983;173(2):231–7.

    Article  PubMed  CAS  Google Scholar 

  99. Giebisch GH. A trail of research on potassium. Kidney Int. 2002;62:1498–512. doi:10.1046/j.1523-1755.2002.t01-2-00644.x.

    Article  PubMed  CAS  Google Scholar 

  100. Malnic G, Klose RM, Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966;211(3):529–47.

    PubMed  CAS  Google Scholar 

  101. Malnic G, Klose RM, Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol. 1966;211(3):548–59.

    PubMed  CAS  Google Scholar 

  102. Malnic G, Klose RM, Giebisch G. Micropuncture study of renal potassium excretion in the rat. Am J Physiol. 1964;206:674–86.

    PubMed  CAS  Google Scholar 

  103. Solomon S. Absolute rates of sodium and potassium reabsorption by proximal tubule of immature rats. Biol Neonate. 1974;25(5–6):340–51.

    Article  PubMed  CAS  Google Scholar 

  104. Bomsztyk K, Wright FS. Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol. 1986;250(4 Pt 2):F680–9.

    PubMed  CAS  Google Scholar 

  105. Kibble JD, et al. Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat. Am J Physiol. 1995;268(4 Pt 2):F778–83.

    PubMed  CAS  Google Scholar 

  106. Weinstein AM. Modeling the proximal tubule: complications of the paracellular pathway. Am J Physiol. 1988;254(3 Pt 2):F297–305.

    PubMed  CAS  Google Scholar 

  107. Wilson RW, Wareing M, Green R. The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat. J Physiol. 1997;500(Pt 1):155–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Fromter E, Gessner K. Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch. 1974;351(1):69–83.

    Article  PubMed  CAS  Google Scholar 

  109. Edelman A, et al. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 1978;378(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  110. Yao X, et al. Expression of KCNA10, a voltage-gated K channel, in glomerular endothelium and at the apical membrane of the renal proximal tubule. J Am Soc Nephrol. 2002;13(12):2831–9.

    Article  PubMed  CAS  Google Scholar 

  111. Vallon V, et al. Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol. 2001;12(10):2003–11.

    PubMed  CAS  Google Scholar 

  112. Wang Q, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12(1):17–23.

    Article  PubMed  Google Scholar 

  113. Schulze-Bahr E, et al. KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet. 1997;17(3):267–8.

    Article  PubMed  CAS  Google Scholar 

  114. Splawski I, et al. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17(3):338–40.

    Article  PubMed  CAS  Google Scholar 

  115. Ho K, et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993;362(6415):31–8.

    Article  PubMed  CAS  Google Scholar 

  116. Zhou H, Tate SS, Palmer LG. Primary structure and functional properties of an epithelial K channel. Am J Physiol. 1994;266(3 Pt 1):C809–24.

    PubMed  CAS  Google Scholar 

  117. Boim MA, et al. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol. 1995;268(6 Pt 2):F1132–40.

    PubMed  CAS  Google Scholar 

  118. International Collaborative Study Group for Bartter-like Syndromes, c.o.G.K.L., Konrad M, Köckerling A, Ziegler A, Zimmermann DK, Roth B, Wieg C, Grzeschik K-H, Koch MC, Seyberth HW, Group 2: Vargas R, Forestier L, Jean G, Deschaux M, Rizzoni GF, Niaudet P, Antignac C, Group 3: Feldmann D, Lorridon F, Cougoureux E, Laroze F, Alessandri J-L, David L, Saunier P, Deschenes G, Group 4: Hildebrandt F, Vollmer M, Proesmans W, Brandis M, Group 5: van den Heuvel LP, Lemmink HH, Nillesen W, Monnens LAH, Knoers NVAM, Group 6: Guay-Woodford LM, Wright CJ, Madrigal G, Hebert SC. Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. International Collaborative Study Group for Bartter-like Syndromes. Hum Mol Genet. 1997;6(1):17–26.

    Google Scholar 

  119. Simon DB, et al. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.

    Article  PubMed  CAS  Google Scholar 

  120. Simon DB, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17(2):171–8.

    Article  PubMed  CAS  Google Scholar 

  121. Birkenhager R, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29(3):310–4.

    Article  PubMed  CAS  Google Scholar 

  122. Zink H, Horster M. Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol. 1977;233(6):F519–24.

    PubMed  CAS  Google Scholar 

  123. Yasui M, et al. Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol. 1996;271(2 Pt 2):F461–8.

    PubMed  CAS  Google Scholar 

  124. Schmidt U, Horster M. Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol. 1977;233(1):F55–60.

    PubMed  CAS  Google Scholar 

  125. Smith FG, Abraham J. Renal and renin responses to furosemide in conscious lambs during postnatal maturation. Can J Physiol Pharmacol. 1995;73(1):107–12.

    Article  PubMed  CAS  Google Scholar 

  126. Mirochnick MH, et al. Renal response to furosemide in very low birth weight infants during chronic administration. Dev Pharmacol Ther. 1990;15(1):1–7.

    PubMed  CAS  Google Scholar 

  127. Imai M, Nakamura R. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 1982;22(5):465–72.

    Article  PubMed  CAS  Google Scholar 

  128. Satlin LM. Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol. 1994;266(1 Pt 2):F57–65.

    PubMed  CAS  Google Scholar 

  129. Schnermann J, Steipe B, Briggs JP. In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Physiol. 1987;252(6 Pt 2):F970–6.

    PubMed  CAS  Google Scholar 

  130. Frindt G, Palmer LG. Effects of dietary K on cell-surface expression of renal ion channels and transporters. Am J Physiol Renal Physiol. 2010;299(4):F890–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Vallon V, et al. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol. 2009;297(3):F704–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Huang CL, Kuo E. Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension. Nat Clin Pract Nephrol. 2007;3(11):623–30.

    Article  PubMed  CAS  Google Scholar 

  133. Constantinescu A, Silver RB, Satlin LM. H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol. 1997;272(2 Pt 2):F167–77.

    PubMed  CAS  Google Scholar 

  134. Satlin LM, Matsumoto T, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol. 1992;262(2 Pt 2):F199–208.

    PubMed  CAS  Google Scholar 

  135. Velazquez H, Ellison DH, Wright FS. Chloride-dependent potassium secretion in early and late renal distal tubules. Am J Physiol. 1987;253(3 Pt 2):F555–62.

    PubMed  CAS  Google Scholar 

  136. Wingo CS. Reversible chloride-dependent potassium flux across the rabbit cortical collecting tubule. Am J Physiol. 1989;256(4 Pt 2):F697–704.

    PubMed  CAS  Google Scholar 

  137. Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol. 2004;287(5):F1030–7.

    Article  PubMed  CAS  Google Scholar 

  138. Frindt G, Palmer LG. Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol. 1989;256(1 Pt 2):F143–51.

    PubMed  CAS  Google Scholar 

  139. Wang WH, Schwab A, Giebisch G. Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol. 1990;259(3 Pt 2):F494–502.

    PubMed  CAS  Google Scholar 

  140. Lu M, et al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem. 2002;277(40):37881–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  141. Kleta R, Bockenhauer D. Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol. 2006;104(2):73–80.

    Article  CAS  Google Scholar 

  142. Wang WH. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Am J Physiol Renal Physiol. 2006;290(1):F14–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Wang WH, Giebisch G. Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proc Natl Acad Sci U S A. 1991;88(21):9722–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Xu ZC, Yang Y, Hebert SC. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem. 1996;271(16):9313–9.

    Article  PubMed  CAS  Google Scholar 

  145. Schafer JA, Troutman SL. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules. Am J Physiol. 1986;250(6 Pt 2):F1063–72.

    PubMed  CAS  Google Scholar 

  146. Lin DH, et al. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am J Physiol Renal Physiol. 2004;286(5):F881–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Lin DH, Sterling H, Wang WH. The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion. Physiology (Bethesda). 2005;20:140–6.

    Article  CAS  Google Scholar 

  148. Zeng WZ, et al. Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am J Physiol Renal Physiol. 2002;283(4):F630–9.

    Article  PubMed  Google Scholar 

  149. Wang W. Regulation of renal K transport by dietary K intake. Annu Rev Physiol. 2004;66:547–69.

    Article  PubMed  CAS  Google Scholar 

  150. Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases. Annu Rev Physiol. 2008;70:329–55.

    Article  PubMed  CAS  Google Scholar 

  151. Wilson FH, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci U S A. 2003;100(2):680–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  152. Kahle KT, et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet. 2003;35(4):372–6.

    Article  PubMed  CAS  Google Scholar 

  153. Wilson FH, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.

    Article  PubMed  CAS  Google Scholar 

  154. Xie J, et al. Role of with-no-lysine [K] kinases in the pathogenesis of Gordon’s syndrome. Pediatr Nephrol. 2006;21(9):1231–6.

    Article  PubMed  Google Scholar 

  155. Subramanya AR, et al. Dominant-negative regulation of WNK1 by its kidney-specific kinase-defective isoform. Am J Physiol Renal Physiol. 2006;290(3):F619–24.

    Article  PubMed  CAS  Google Scholar 

  156. Boyden LM, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482(7383):98–102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Louis-Dit-Picard H, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44(4):456–60. S1–3.

    Article  PubMed  CAS  Google Scholar 

  158. Shibata S, et al. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A. 2013;110(19):7838–43.

    Article  PubMed Central  PubMed  Google Scholar 

  159. Liu W, et al. Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. Am J Physiol Renal Physiol. 2007;293(1):F227–35.

    Article  PubMed  CAS  Google Scholar 

  160. Woda CB, et al. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol. 2001;280(5):F786–93.

    PubMed  CAS  Google Scholar 

  161. Li D, et al. Inhibition of MAPK stimulates the Ca2+-dependent big-conductance K channels in cortical collecting duct. Proc Natl Acad Sci U S A. 2006;103(51):19569–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Pacha J, et al. Apical maxi K channels in intercalated cells of CCT. Am J Physiol. 1991;261(4 Pt 2):F696–705.

    PubMed  CAS  Google Scholar 

  163. Liu W, et al. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol. 2003;285(5):F998–1012.

    Article  PubMed  CAS  Google Scholar 

  164. Taniguchi J, et al. Pressure- and parathyroid-hormone-dependent Ca2+ transport in rabbit connecting tubule: role of the stretch-activated nonselective cation channel. J Membr Biol. 1994;140(2):123–32.

    Article  PubMed  CAS  Google Scholar 

  165. Palmer LG, Frindt G. High-conductance K channels in intercalated cells of the rat distal nephron. Am J Physiol Renal Physiol. 2007;292(3):F966–73.

    Article  PubMed  CAS  Google Scholar 

  166. Pluznick JL, et al. Renal fluid and electrolyte handling in BKCa-beta1-/- mice. Am J Physiol Renal Physiol. 2003;284(6):F1274–9.

    Article  PubMed  CAS  Google Scholar 

  167. Rieg T, et al. The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int. 2007;72(5):566–73.

    Article  PubMed  CAS  Google Scholar 

  168. Bailey MA, et al. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int. 2006;70(1):51–9.

    Article  PubMed  CAS  Google Scholar 

  169. Finer G, et al. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr. 2003;142(3):318–23.

    Article  PubMed  CAS  Google Scholar 

  170. Rodriguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol. 1998;12(4):315–27.

    Article  PubMed  CAS  Google Scholar 

  171. Simon DB, et al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14(2):152–6.

    Article  PubMed  CAS  Google Scholar 

  172. Flores D, et al. Flow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am J Physiol Renal Physiol. 2012;303(5):F632–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. Wang Z, et al. Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase. Am J Physiol Cell Physiol. 2013;305(8):C846–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  174. Buffin-Meyer B, et al. K depletion modifies the properties of Sch-28080-sensitive K-ATPase in rat collecting duct. Am J Physiol. 1997;272(1 Pt 2):F124–31.

    PubMed  CAS  Google Scholar 

  175. Codina J, DuBose Jr TD. Molecular regulation and physiology of the H+, K+ -ATPases in kidney. Semin Nephrol. 2006;26(5):345–51.

    Article  PubMed  CAS  Google Scholar 

  176. Zhou X, et al. Increased CO2 stimulates K/Rb reabsorption mediated by H-K-ATPase in CCD of potassium-restricted rabbit. Am J Physiol Renal Physiol. 2001;281(2):F366–73.

    PubMed  CAS  Google Scholar 

  177. Ahn KY, et al. Effects of chronic hypokalemia on renal expression of the “gastric” H+-K+-ATPase alpha-subunit gene. Am J Physiol. 1996;270(4 Pt 2):F557–66.

    PubMed  CAS  Google Scholar 

  178. Silver RB, Mennitt PA, Satlin LM. Stimulation of apical H-K-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Physiol. 1996;270(3 Pt 2):F539–47.

    PubMed  CAS  Google Scholar 

  179. Palmer LG, Frindt G. Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol. 1999;277(5 Pt 2):F805–12.

    PubMed  CAS  Google Scholar 

  180. Wang W, et al. Protein tyrosine kinase regulates the number of renal secretory K channels. Am J Physiol Renal Physiol. 2000;278(1):F165–71.

    PubMed  CAS  Google Scholar 

  181. Najjar F, et al. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am J Physiol Renal Physiol. 2005;289(4):F922–32.

    Article  PubMed  CAS  Google Scholar 

  182. Silver RB, Soleimani M. H+-K+-ATPases: regulation and role in pathophysiological states. Am J Physiol. 1999;276(6 Pt 2):F799–811.

    PubMed  CAS  Google Scholar 

  183. Evan AP, et al. Postnatal maturation of rabbit renal collecting duct. II. Morphological observations. Am J Physiol. 1991;261(1 Pt 2):F91–107.

    PubMed  CAS  Google Scholar 

  184. Satlin LM, et al. Postnatal maturation of the rabbit cortical collecting duct. Pediatr Nephrol. 1988;2(1):135–45.

    Article  PubMed  CAS  Google Scholar 

  185. Minuth WW, et al. Expression of the alpha-subunit of Na/K-ATPase in renal collecting duct epithelium during development. Kidney Int. 1987;31(5):1104–12.

    Article  PubMed  CAS  Google Scholar 

  186. Constantinescu AR, et al. Na+-K+-ATPase-mediated basolateral rubidium uptake in the maturing rabbit cortical collecting duct. Am J Physiol Renal Physiol. 2000;279(6):F1161–8.

    PubMed  CAS  Google Scholar 

  187. Satlin LM, Palmer LG. Apical K+ conductance in maturing rabbit principal cell. Am J Physiol. 1997;272(3 Pt 2):F397–404.

    PubMed  CAS  Google Scholar 

  188. Benchimol C, Zavilowitz B, Satlin LM. Developmental expression of ROMK mRNA in rabbit cortical collecting duct. Pediatr Res. 2000;47(1):46–52.

    Article  PubMed  CAS  Google Scholar 

  189. Zolotnitskaya A, Satlin LM. Developmental expression of ROMK in rat kidney. Am J Physiol. 1999;276(6 Pt 2):F825–36.

    PubMed  CAS  Google Scholar 

  190. Woda CB, et al. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects. Am J Physiol Renal Physiol. 2003;285(4):F629–39.

    Article  PubMed  CAS  Google Scholar 

  191. Good DW, Wright FS. Luminal influences on potassium secretion: sodium concentration and fluid flow rate. Am J Physiol. 1979;236(2):F192–205.

    PubMed  CAS  Google Scholar 

  192. Stokes JB. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol. 1981;241(4):F395–402.

    PubMed  CAS  Google Scholar 

  193. Aperia A, Elinder G. Distal tubular sodium reabsorption in the developing rat kidney. Am J Physiol. 1981;240(6):F487–91.

    PubMed  CAS  Google Scholar 

  194. Garty H, Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev. 1997;77(2):359–96.

    PubMed  CAS  Google Scholar 

  195. Satlin LM, et al. Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol. 2001;280(6):F1010–8.

    PubMed  CAS  Google Scholar 

  196. Kleyman TR, Roberts C, Ling BN. A mechanism for pentamidine-induced hyperkalemia: inhibition of distal nephron sodium transport. Ann Intern Med. 1995;122(2):103–6.

    Article  PubMed  CAS  Google Scholar 

  197. Schlanger LE, Kleyman TR, Ling BN. K+-sparing diuretic actions of trimethoprim: inhibition of Na+ channels in A6 distal nephron cells. Kidney Int. 1994;45(4):1070–6.

    Article  PubMed  CAS  Google Scholar 

  198. Muto S. Potassium transport in the mammalian collecting duct. Physiol Rev. 2001;81(1):85–116.

    PubMed  CAS  Google Scholar 

  199. Stapleton FB, et al. Hypokalemia associated with antibiotic treatment. Evidence in children with malignant neoplasms. Am J Dis Child. 1976;130(10):1104–8.

    Article  PubMed  CAS  Google Scholar 

  200. Morimoto T, et al. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol. 2006;291(3):F663–9.

    Article  PubMed  CAS  Google Scholar 

  201. Malnic G, Berliner RW, Giebisch G. Flow dependence of K+ secretion in cortical distal tubules of the rat. Am J Physiol. 1989;256(5 Pt 2):F932–41.

    PubMed  CAS  Google Scholar 

  202. Frindt G, et al. Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation. Am J Physiol. 1998;274(3 Pt 2):F525–31.

    PubMed  CAS  Google Scholar 

  203. Brandis M, Keyes J, Windhager EE. Potassium-induced inhibition of proximal tubular fluid reabsorption in rats. Am J Physiol. 1972;222(2):421–7.

    PubMed  CAS  Google Scholar 

  204. Sufit CR, Jamison RL. Effect of acute potassium load on reabsorption in Henle’s loop in the rat. Am J Physiol. 1983;245(5 Pt 1):F569–76.

    PubMed  CAS  Google Scholar 

  205. Rabinowitz L. Aldosterone and potassium homeostasis. Kidney Int. 1996;49(6):1738–42.

    Article  PubMed  CAS  Google Scholar 

  206. Youn JH. Gut sensing of potassium intake and its role in potassium homeostasis. Semin Nephrol. 2013;33(3):248–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  207. Morita H, et al. Hepatoportal bumetanide-sensitive K+-sensor mechanism controls urinary K+ excretion. Am J Physiol Regul Integr Comp Physiol. 2000;278(5):R1134–9.

    PubMed  CAS  Google Scholar 

  208. Ahloulay M, et al. Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. Am J Physiol. 1995;269(2 Pt 2):F225–35.

    PubMed  CAS  Google Scholar 

  209. Pullman TN, Lavender AR, Aho I. Direct effects of glucagon on renal hemodynamics and excretion of inorganic ions. Metabolism. 1967;16(4):358–73.

    Article  PubMed  CAS  Google Scholar 

  210. Blachley JD, Crider BP, Johnson JH. Extrarenal potassium adaptation: role of skeletal muscle. Am J Physiol. 1986;251(2 Pt 2):F313–8.

    PubMed  CAS  Google Scholar 

  211. Hayslett JP, Binder HJ. Mechanism of potassium adaptation. Am J Physiol. 1982;243(2):F103–12.

    PubMed  CAS  Google Scholar 

  212. Alexander EA, Levinsky NG. An extrarenal mechanism of potassium adaptation. J Clin Invest. 1968;47(4):740–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  213. Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84(2):489–539.

    Article  PubMed  CAS  Google Scholar 

  214. Young DB, et al. Multiplicative interaction between angiotensin II and K concentration in stimulation of aldosterone. Am J Physiol. 1984;247(3 Pt 1):E328–35.

    PubMed  CAS  Google Scholar 

  215. Engbretson BG, Stoner LC. Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am J Physiol. 1987;253(5 Pt 2):F896–903.

    PubMed  CAS  Google Scholar 

  216. Schwartz GJ, Burg MB. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol. 1978;235(6):F576–85.

    PubMed  CAS  Google Scholar 

  217. Palmer LG, Antonian L, Frindt G. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol. 1994;104(4):693–710.

    Article  PubMed  CAS  Google Scholar 

  218. Masilamani S, et al. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 1999;104(7):R19–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  219. O’Neil RG, Hayhurst RA. Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. J Membr Biol. 1985;85(2):169–79.

    Article  PubMed  Google Scholar 

  220. Pacha J, et al. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol. 1993;102(1):25–42.

    Article  PubMed  CAS  Google Scholar 

  221. Summa V, et al. Short term effect of aldosterone on Na, K-ATPase cell surface expression in kidney collecting duct cells. J Biol Chem. 2001;276(50):47087–93.

    Article  PubMed  CAS  Google Scholar 

  222. Ikeda U, et al. Aldosterone-mediated regulation of Na+, K+-ATPase gene expression in adult and neonatal rat cardiocytes. J Biol Chem. 1991;266(18):12058–66.

    PubMed  CAS  Google Scholar 

  223. Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol. 1981;240(6):F536–44.

    PubMed  CAS  Google Scholar 

  224. Chen SY, et al. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci U S A. 1999;96(5):2514–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  225. Debonneville C, et al. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 2001;20(24):7052–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  226. Wulff P, et al. Impaired renal Na+ retention in the sgk1-knockout mouse. J Clin Invest. 2002;110(9):1263–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  227. Vallon V, et al. Role of Sgk1 in salt and potassium homeostasis. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R4–10.

    Article  PubMed  CAS  Google Scholar 

  228. Huang DY, et al. Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J Am Soc Nephrol. 2004;15(4):885–91.

    Article  PubMed  CAS  Google Scholar 

  229. Attali B, et al. A corticosteroid-induced gene expressing an “IsK-like” K+ channel activity in Xenopus oocytes. Proc Natl Acad Sci U S A. 1995;92(13):6092–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  230. Garty H, et al. A functional interaction between CHIF and Na-K-ATPase: implication for regulation by FXYD proteins. Am J Physiol Renal Physiol. 2002;283(4):F607–15.

    Article  PubMed  Google Scholar 

  231. Capurro C, et al. Cellular localization and regulation of CHIF in kidney and colon. Am J Physiol. 1996;271(3 Pt 1):C753–62.

    PubMed  CAS  Google Scholar 

  232. Wald H, et al. Aldosterone induction and epithelial distribution of CHIF. Am J Physiol. 1996;271(2 Pt 2):F322–9.

    PubMed  CAS  Google Scholar 

  233. Van Acker KJ, et al. Renin-angiotensin-aldosterone system in the healthy infant and child. Kidney Int. 1979;16(2):196–203.

    Article  PubMed  Google Scholar 

  234. Aperia A, et al. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand. 1979;68(6):813–7.

    Article  PubMed  CAS  Google Scholar 

  235. Robillard JE, Nakamura KT, Lawton WJ. Effects of aldosterone on urinary kallikrein and sodium excretion during fetal life. Pediatr Res. 1985;19(10):1048–52.

    Article  PubMed  CAS  Google Scholar 

  236. Stephenson G, et al. Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol. 1984;247(4 Pt 2):F665–71.

    PubMed  CAS  Google Scholar 

  237. West ML, et al. New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab. 1986;12(4):234–8.

    PubMed  CAS  Google Scholar 

  238. West ML, et al. Development of a test to evaluate the transtubular potassium concentration gradient in the cortical collecting duct in vivo. Miner Electrolyte Metab. 1986;12(4):226–33.

    PubMed  CAS  Google Scholar 

  239. Field MJ, Giebisch GJ. Hormonal control of renal potassium excretion. Kidney Int. 1985;27(2):379–87.

    Article  PubMed  CAS  Google Scholar 

  240. Rodriguez-Soriano J, Ubetagoyena M, Vallo A. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol. 1990;4(2):105–10.

    Article  PubMed  CAS  Google Scholar 

  241. Malnic G, De Mello Aires M, Giebisch G. Potassium transport across renal distal tubules during acid–base disturbances. Am J Physiol. 1971;221(4):1192–208.

    PubMed  CAS  Google Scholar 

  242. Boudry JF, Stoner LC, Burg MB. Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol. 1976;230(1):239–44.

    PubMed  CAS  Google Scholar 

  243. Tabei K, et al. Potassium secretion is inhibited by metabolic acidosis in rabbit cortical collecting ducts in vitro. Am J Physiol. 1995;268(3 Pt 2):F490–5.

    PubMed  CAS  Google Scholar 

  244. Beck FX, et al. The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis. Pflugers Arch. 1988;411(3):259–67.

    Article  PubMed  CAS  Google Scholar 

  245. Stone DK, et al. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect. J Clin Invest. 1983;72(1):77–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  246. Kone BC, Higham SC. A novel N-terminal splice variant of the rat H+-K+-ATPase alpha2 subunit. Cloning, functional expression, and renal adaptive response to chronic hypokalemia. J Biol Chem. 1998;273(5):2543–52.

    Article  PubMed  CAS  Google Scholar 

  247. Moore-Ede MC, et al. Circadian variation in response to potassium infusion. Clin Pharmacol Ther. 1978;23(2):218–27.

    Article  PubMed  CAS  Google Scholar 

  248. Moore-Ede MC, Herd JA. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Am J Physiol. 1977;232(2):F128–35.

    PubMed  CAS  Google Scholar 

  249. Gumz ML, et al. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest. 2009;119(8):2423–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  250. Zuber AM, et al. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci U S A. 2009;106(38):16523–8.

    Article  PubMed Central  PubMed  Google Scholar 

  251. Rakova N, et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab. 2013;17(1):125–31.

    Article  PubMed  CAS  Google Scholar 

  252. Aizman RI, et al. Ontogeny of K+ transport in rat distal colon. Am J Physiol. 1996;271(2 Pt 1):G268–74.

    PubMed  CAS  Google Scholar 

  253. Foster ES, Hayslett JP, Binder HJ. Mechanism of active potassium absorption and secretion in the rat colon. Am J Physiol. 1984;246(5 Pt 1):G611–7.

    PubMed  CAS  Google Scholar 

  254. Dawson DC. Ion channels and colonic salt transport. Annu Rev Physiol. 1991;53:321–39.

    Article  PubMed  CAS  Google Scholar 

  255. Butterfield I, et al. Characterization of apical potassium channels induced in rat distal colon during potassium adaptation. J Physiol. 1997;501(Pt 3):537–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  256. Pacha J, Popp M, Capek K. Corticosteroid regulation of Na+ and K+ transport in the rat distal colon during postnatal development. J Dev Physiol. 1988;10(6):531–40.

    PubMed  CAS  Google Scholar 

  257. Warth R, Bleich M. K+ channels and colonic function. Rev Physiol Biochem Pharmacol. 2000;140:1–62.

    PubMed  CAS  Google Scholar 

  258. Sausbier M, et al. Distal colonic K+ secretion occurs via BK channels. J Am Soc Nephrol. 2006;17(5):1275–82.

    Article  PubMed  CAS  Google Scholar 

  259. Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev. 2002;82(1):245–89.

    Article  PubMed  CAS  Google Scholar 

  260. Rechkemmer G, Frizzell RA, Halm DR. Active potassium transport across guinea-pig distal colon: action of secretagogues. J Physiol. 1996;493(Pt 2):485–502.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  261. Binder HJ, McGlone F, Sandle GI. Effects of corticosteroid hormones on the electrophysiology of rat distal colon: implications for Na+ and K+ transport. J Physiol. 1989;410:425–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  262. Agarwal R, Afzalpurkar R, Fordtran JS. Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology. 1994;107(2):548–71.

    PubMed  CAS  Google Scholar 

  263. Hayes Jr CP, McLeod ME, Robinson RR. An extrarenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans Assoc Am Physicians. 1967;80:207–16.

    PubMed  Google Scholar 

  264. Sandle GI, et al. Enhanced rectal potassium secretion in chronic renal insufficiency: evidence for large intestinal potassium adaptation in man. Clin Sci (Lond). 1986;71(4):393–401.

    Article  CAS  Google Scholar 

  265. Sandle GI, et al. Evidence for large intestinal control of potassium homoeostasis in uraemic patients undergoing long-term dialysis. Clin Sci (Lond). 1987;73(3):247–52.

    Article  CAS  Google Scholar 

  266. Mathialahan T, et al. Enhanced large intestinal potassium permeability in end-stage renal disease. J Pathol. 2005;206(1):46–51.

    Article  PubMed  CAS  Google Scholar 

  267. Aizman R, Aizman O, Celsi G. Beta-adrenergic stimulation of cellular K+ uptake in rat distal colon. Acta Physiol Scand. 1998;164(3):309–15.

    Article  PubMed  CAS  Google Scholar 

  268. Don BR, et al. Pseudohyperkalemia caused by fist clenching during phlebotomy. N Engl J Med. 1990;322(18):1290–2.

    Article  PubMed  CAS  Google Scholar 

  269. Stankovic AK, Smith S. Elevated serum potassium values: the role of preanalytic variables. Am J Clin Pathol. 2004;121(Suppl):S105–12.

    PubMed  Google Scholar 

  270. Sevastos N, et al. Pseudohyperkalemia in serum: the phenomenon and its clinical magnitude. J Lab Clin Med. 2006;147(3):139–44.

    Article  PubMed  CAS  Google Scholar 

  271. Sevastos N, et al. Pseudohyperkalemia in patients with increased cellular components of blood. Am J Med Sci. 2006;331(1):17–21.

    Article  PubMed  Google Scholar 

  272. King MJ, Zanella A. Hereditary red cell membrane disorders and laboratory diagnostic testing. Int J Lab Hematol. 2013;35(3):237–43.

    Article  PubMed  Google Scholar 

  273. Montague BT, Ouellette JR, Buller GK. Retrospective review of the frequency of ECG changes in hyperkalemia. Clin J Am Soc Nephrol. 2008;3(2):324–30.

    Article  PubMed Central  PubMed  Google Scholar 

  274. Saxena K. Clinical features and management of poisoning due to potassium chloride. Med Toxicol Adverse Drug Exp. 1989;4(6):429–43.

    Article  PubMed  CAS  Google Scholar 

  275. Zettle RM, et al. Renal potassium handling during states of low aldosterone bio-activity: a method to differentiate renal and non-renal causes. Am J Nephrol. 1987;7(5):360–6.

    Article  PubMed  CAS  Google Scholar 

  276. Dillon MJ, et al. Pseudohypoaldosteronism. Arch Dis Child. 1980;55(6):427–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  277. Hoorn EJ, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17(10):1304–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  278. Bonny O, Rossier BC. Disturbances of Na/K balance: pseudohypoaldosteronism revisited. J Am Soc Nephrol. 2002;13(9):2399–414.

    Article  PubMed  CAS  Google Scholar 

  279. Dellow EL, Unwin RJ, Honour JW. Pontefract cakes can be bad for you: refractory hypertension and liquorice excess. Nephrol Dial Transplant. 1999;14(1):218–20.

    Article  PubMed  CAS  Google Scholar 

  280. Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol. 2011 Oct;26(10):1789–802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Satlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Satlin, L.M., Bockenhauer, D. (2016). Physiology of the Developing Kidney: Potassium Homeostasis and Its Disorder. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics