Skip to main content

Removal of Copper by Free and Immobilized Microalga, Chlorella vulgaris

  • Chapter
Wastewater Treatment with Algae

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Toxic heavy metals of industrial wastes are major pollutants which must be removed before discharge. Microalgal biomass, because of its high metal uptake capacity and high multiplication rate, has been applied as a simple and effective alternative to remove heavy metals from industrial wastewater. The capacity of adsorbing/absorbing and accumulating heavy metals in microalgal cells depend on many biotic factors, in particular, the cell density and how algal cells are pretreated before use. The effectiveness of microalgal cells to remove heavy metals can further be enhanced by immobilization which not only eliminates the necessity for separating the cells from treated wastewater, but also makes the regeneration and reuse of the immobilized micro algal cells become possible. This chapter presents and discusses the experimental findings on: 1) the effects of cell density on removal of copper by free Chlorella vulgaris; 2) the performance of living and dead (killed by different methods) microalgal cells on copper removal; 3) the removal of copper by alginate immobilized cells; and 4) the regeneration and reuse of immobilized algal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corradi MG, Corbi G, Bassi M. Hexavalent chromium induces gametogenesis in the freshwater alga Scenedesmus acutus. Ecotoxicol Environ Safety 1995; 30: 106–110.

    Article  CAS  Google Scholar 

  2. Volesky B. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 1994; 14: 291–302.

    Article  CAS  Google Scholar 

  3. Asku Z, Sag Y, Kutsal T. The biosorption of copper (II) by C. vulgaris and Z. ramigera. Environ Technol 1992; 13: 579–586.

    Article  Google Scholar 

  4. EPD (Environmental Protection Department). Environment Hong Kong 1990. Hong Kong: Hong Kong Government Printer, 1990.

    Google Scholar 

  5. Patterson JW. Waste Water Treatment. USA: Science Publishers Inc., 1997.

    Google Scholar 

  6. Aksu Z, Kutsal T. A comparative study for biosorption characteristics of heavy metal ions with C. vulgaris. Environ Technol 1990; 11: 979–987.

    Article  CAS  Google Scholar 

  7. Trevors JT, Stratton GW, Gadd GM. Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can J Microbiol 1986; 32: 447–464.

    Article  CAS  Google Scholar 

  8. Gadd GM. Microbial control of heavy metal pollution. In: Fry JC, Gadd GM, Jones CW et al., eds. Microbial Control of Pollution. Cambridge: Cambridge University Press, 1992: 59–88.

    Google Scholar 

  9. Volesky B. Removal and recovery of heavy metals by biosorption. In: Volesky B ed. Biosorption of Heavy Metals. Boca Raton: CRC Press, 1990: 7–43.

    Google Scholar 

  10. Lombrana JI, Varona F, Mijangos F. Study of nickel sorption onto biological sludges: Possibilities for heavy metal removal treatments. Wat Air Soil Pollut 1995; 82: 645–658.

    Article  CAS  Google Scholar 

  11. Chatterjee S, Asthana RK, Tripathi AK et al. Metal removal by selected sorbents. Process Biochem 1996; 31: 457–462.

    Article  CAS  Google Scholar 

  12. Simmons P, Tobin JM, Singleton I. Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J Ind Microbiol 1995; 14: 240–246.

    Article  CAS  Google Scholar 

  13. Lustigman B, Lee LH, Khalil A. Effects of nickel and pH on the growth of Chlorella vulgaris. Bull Environ Contam Toxicol 1995; 55: 73–80.

    Article  CAS  Google Scholar 

  14. Greene B, McPherson R, Darnall D. Algal sorbents for selective metal ion recovery. In: Patterson JW, Passino R, ed. Metals Speciation, Separation and Recovery. Chicago: Lewis Publishers, Inc., 1987: 315–318.

    Google Scholar 

  15. Aksu et al. 1990 Asku Z, Sag Y, Kutsal T. A comparative study of the adsorption of chromium (VI) ions to C. vulgaris and Z. ramigera. Environ Technol 1990; 11: 33–40.

    Google Scholar 

  16. Wilkinson SC, Goulding KH, Robinson PK. Mercury removal by immobilized algae in batch culture systems. J Appl Phycol 1990; 2: 223–230.

    Article  Google Scholar 

  17. Wehrheim B, Wettern M. Comparative studies of the heavy metal uptake of whole cells and different types of cell walls from Chlorella fusca. Biotechnol Tech 1994; 8: 221–226.

    Article  CAS  Google Scholar 

  18. Blumreisinger M, Meindl D, Loos E. Cell wall composition of Chlorococcal algae. Phytochem 1983; 22: 1603–1604.

    Article  CAS  Google Scholar 

  19. Aksu Z, Kutsal T. A bioseparation process for removing lead (II) ions from wastewater by using C. vulgaris. J Chem Tech Biotechnol 1991; 52: 109–118.

    CAS  Google Scholar 

  20. Darnall DW, Greene B, Henzl MT et al. Selective recovery of gold and other metal ions from an algal biomass. Environ Sci Technol 1986; 20: 206–208.

    Article  CAS  Google Scholar 

  21. Greene B, Hosea M, McPherson R et al. Interaction of gold (I) and gold (III) complexes with algal biomass. Environ Sci Technol 1986; 20: 627–632.

    Article  CAS  Google Scholar 

  22. Crist RH, Oberholser K, Schwartx D et al. Interaction of metals and protons with algae. Environ Sci Technol 1988: 22: 755–760.

    Article  CAS  Google Scholar 

  23. Xue HB, Strumm W, Sigg L. The binding of heavy metals to algal surfaces. Wat Res 1988; 22: 917–926.

    Article  CAS  Google Scholar 

  24. Wilde EW, Benemann JR. Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 1993; 11: 781–812.

    Article  CAS  Google Scholar 

  25. Crist RH, Martin JR, Carr D et al. Interaction of metals and protons with algae. 4. Ion exchange vs adsorption models and a reassessment of scatchard plots: ion exchange rates and equilibrium compared with calcium alginate. Environ Sci Technol 1994; 28: 1859–1866.

    Article  CAS  Google Scholar 

  26. Harris PO, Ramelow GJ. Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricula. Environ Sci Technol 1990; 24: 220–228.

    Article  CAS  Google Scholar 

  27. Ting YP, Lawson F, Prince IG. Uptake of cadmium and zinc by the alga Chlorella vulgaris: II Multi-ion situation. Biotechnol Bioengn 1991; 37: 445–455.

    Article  CAS  Google Scholar 

  28. Avery SV, Tobin JM. Mechanisms of Sr uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 1992; 58: 3883–3889.

    CAS  Google Scholar 

  29. Urriutia Mera M, Kemper M, Doyle R etal. The membrane induced proton motive force influences the metal binding ability of Bacillus subtilus cell walls. Appl Environ Microbiol 1992; 58: 3837–3844.

    Google Scholar 

  30. Brady JM, Tobin JM. Adsorption of metal ions by Rhizopus arrhizus biomass: characterization studies. Enzyme Microbiol Technol 1994; 16: 671–675.

    Article  CAS  Google Scholar 

  31. Robinson PK, Wilkinson SC. Removal of aqueous mercury and phosphate using gel entrapped Chlorella in packed bed reactors. Enzyme Microbiol Technol 1994; 16: 802–807.

    Article  CAS  Google Scholar 

  32. Tolley MR, Strachan LF, Macaskie LE. Lanthanum accumulation from acidic solutions using a Citrobacter sp immobilized in a flow-through bioreactor. J Ind Microbiol 1995; 14: 271–280.

    Article  CAS  Google Scholar 

  33. Wilkinson SC, Goulding KH, Robinson PK. Mercury accumulation and volatilization in immobilized algal cell systems. Biotechnol Lett 1989; 11: 961–964.

    Article  Google Scholar 

  34. Garnham GW, Codd GA, Gadd GM. Accumulation of cobolt, zinc, and maganese by the estuarine green microalge Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 1992; 26: 1764–1770.

    Article  CAS  Google Scholar 

  35. Sharma OP. Textbook of Algae. New Delhi: McGraw-Hill, 1986: 161 pp.

    Google Scholar 

  36. Tam NFY, Wong YS. Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 1989; 5819–34.

    Google Scholar 

  37. Tam NFY, Wong YS. The comparison of growth and nutrient removal efficiency of Chlorella pyrenoidosa in settled and activated sewages. Environ Pollut 1990; 65: 93–108.

    Article  CAS  Google Scholar 

  38. Tam NFY, Lau PS, Wong YS. Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Wat Sci Technol 1994; 30: 369–374.

    CAS  Google Scholar 

  39. Tam NFY, Wong YS. Feasibility of using Chlorella pyrenoidosa in the removal of inorganic nutrients in primary settled sewage. In: Phang SM, Lee YK, Borowitzka MA, Whitton BA, eds. Algal Biotechnology in Asia-Pacific Region. University of Malaya, Malaysia, 1994: 291–299.

    Google Scholar 

  40. Lau PS, Tam NFY, Wong YS. Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 1995; 89: 59–66.

    Article  CAS  Google Scholar 

  41. Lau PS, Tam NFY, Wong YS. Wastewater nutrients removal by Chlorella vulgaris: Optimization through acclimation. Environ Technol 1996; 17: 183–189.

    Article  CAS  Google Scholar 

  42. Lau PS, Tam NFY, Wong YS. An algal biosystem for industrial wastewater treatment. In: Proceedings of Asian Industrial Technology Congress Vol. 1. Hong Kong: The Operation and Organizing Committee, AITC, 1997: 116–120.

    Google Scholar 

  43. Harrison PJ. Phytoplankton stains. In: Lobban CS, Chapman DJ, Kremer BP, eds. Experimental Phycology: A Laboratory Manual. Cambridge: Cambridge University Press, 1988: 23–26.

    Google Scholar 

  44. Pirszel J, Oawlik B. Skowronski T. Cation-exchange capacity of algae and cyanobacteria: a parameter of their metal sorption abilities. J Ind Microbiol 1995; 14: 319–322.

    Article  CAS  Google Scholar 

  45. Sloof JE, Viragh A, Van der Veer B. Kinetics of cadmium uptake by green algae. Wat Air Soil Pollut 1995; 83: 105–122.

    Article  CAS  Google Scholar 

  46. Ting YP, Teo WK, Soh CY. Gold uptake by Chlorella vulgaris. J Appl Phycol 1995; 7: 97–100.

    Article  CAS  Google Scholar 

  47. Munda IM, Hudnik V. Trace metal content in some seaweeds from the Northern Adriatic. Bot Mar 1991; 34: 241–249.

    Article  CAS  Google Scholar 

  48. Malea P., Haritonidis S., Straits I. Bioaccumulation of metals by Rhodophyta species at Antikyra Gulf (Greece) near an aluminium factory. Bot Mar 1994; 37: 505–513.

    CAS  Google Scholar 

  49. Sigma. Sigma Biochemicals, Organic Compounds for Research, and Diagnostic Reagents 1994. Sigma Chemical Company;1994.

    Google Scholar 

  50. Wilhelmi BS, Duncan JR. Reusability of immobilized Saccaromyces cerevisiae with successive copper adsorption — desorption cycles. Biotechnol Lett 1996; 18: 531–536.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tam, N.F.Y., Wong, YS., Simpson, C.G. (1998). Removal of Copper by Free and Immobilized Microalga, Chlorella vulgaris . In: Wong, YS., Tam, N.F.Y. (eds) Wastewater Treatment with Algae. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10863-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10863-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10865-9

  • Online ISBN: 978-3-662-10863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics