Skip to main content

Transgenic Eustoma grandiflorum (Lisianthus)

  • Chapter
Transgenic Crops III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 48))

Abstract

Lisianthus or prairie gentian [Eustoma grandiflorum (Griseb.) Shinn.] is a member of the family Gentianaceae and native to the prairies of the U.S.A. (Shinners 1957). A typical wild-type plant produces a single stem with a purple flower. Intensive breeding in Japan over the past 40 years has resulted in the generation of cut-flower varieties with increased uniformity, longer stem, wider color range, patterns, and double flowers. Present breeding programs in Japan are aimed at rosette resistance, branching stems with multiple flowers, and altered shape of the corolla. Currently, lisianthus is rated ninth in the Japanese cut-flower market with 400 ha of production area, and 10 billion yen of production value per year. The popularity of lisianthus has since spread worldwide, and it was placed 11th on the Dutch cut-flower market ranking in 1995 (Ledger et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbara R, Massabo F (1996) Plant production by somatic embryogenesis in cell suspension cultures of Lisianthus russellianus Hook. Plant Tissue Cult Biotechnol 2: 194–198

    Google Scholar 

  • Bradley JM, Deroles SC, Boase MR, Bloor S, Swinny E, Davies KM (1999) Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Sci 140: 31–39

    Article  CAS  Google Scholar 

  • Brouillard R (1988) Flavonoids and flower colour. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Chapman and Hall, London, pp 525–538

    Google Scholar 

  • Chilton MD, Tepfer DA, Petit A. David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhi- zogenes inserts T-DNA into the genome of the host plant root cells. Nature 295: 432–435

    Google Scholar 

  • Davies KM, Bradley JM, Schwinn KE, Markham KR, Podivinsky E (1993) Flavonoid biosynthesis in flower petals of five lines of lisianthus (Eustoma grandiflorum Grise). Plant Sci 95: 6777

    Article  Google Scholar 

  • Deroles SC, Ledger SE, Miller RM, Davies KM, Given NK (1993) Transformation in Eustoma grandiflorum (Lisianthus). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 22. Plant protoplasts and genetic engineering III. Springer, Berlin Heidelberg New York, pp 202–212

    Google Scholar 

  • Deroles SC, Bradley JM, Schwinn KE, Markham KR, Bloor S, Manson DG, Davies KM (1998) An antisence chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers. Mol Breed 4: 59–66

    Article  CAS  Google Scholar 

  • Estruch JJ, Schell J, Spena A (1991) The protein encoded by the rol B plant oncogene hydrolyses indole glucoside. EMBO J 10: 3125–3128

    PubMed  CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11: 323–328

    Article  CAS  Google Scholar 

  • Giovannini A, Pecchioni N, Allavena A (1996) Genetic transformation of lisianthus (Eustoma grandiflorum Griseb) by Agrobacterium rhizogenes. J Genet Breed 50: 35–39

    Google Scholar 

  • Goto T, Kondo T (1991) Structure and molecular stacking of anthocyanins — flower colour variation. Angew Chem Int Ed Engl 30: 17–33

    Article  Google Scholar 

  • Handa T (1992) Regeneration and characterization of prairie gentian (Eustoma grandiflorum) plants transformed by Agrobacterium rhizogenes. Plant Tissue Cult Lett 9: 10–14

    Article  Google Scholar 

  • Handa T (1996) Transformation of prairie gentian (Eustoma grandiflorum) with Agrobacterium rhizogenes harbouring 1-glucuronidase (GUS) and neomycin phosphotransferase Il (NPTII) genes. J Jpn Hortic Sci 64: 913–918

    Article  CAS  Google Scholar 

  • Handa T, Sugimura T, Kato E, Kamada H, Takayanagi K (1995) Genetic transformation of Eustoma grandifiorum with rol genes. Acta Hortic 392: 209–218

    CAS  Google Scholar 

  • Heller W, Forkmann G (1988) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Chapman & Hall, London, pp 399–425

    Google Scholar 

  • Heller W, Forkmann G (1993) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman & Hall, London, pp 499–536

    Google Scholar 

  • Janssen BJ, Gardner RC (1989) Localized transient expression of GUS in leaf disks following cocultivation with Agrobacterium. Plant Mol Biol 14: 61–72

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: (3-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Kunitake H, Nakashima T, Mori K, Tanaka M, Mii M (1995) Plant regeneration from mesophyll protoplasts of lisianthus (Eustoma grandiflorum) by adding activated charcoal into protoplast culture medium. Plant Cell Tissue Organ Cult 43: 59–65

    Article  Google Scholar 

  • Ledger SE, Deroles SC, Manson DG, Bradley JM, Given NK (1997) Transformation of lisianthus (Eustoma grandiflorum). Plant Cell Rep 16: 853–858

    Article  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue culture. Physiol Plant 18: 100–127

    Article  CAS  Google Scholar 

  • Markham KR (1996) Novel anthocyanins produced in petals of genetically transformed lisianthus. Phytochemistry 42: 1035–1038

    Article  PubMed  CAS  Google Scholar 

  • Markham KR, Ofman DJ (1993) Lisianthus flavonoid pigments and factors influencing their expression in flower colour. Phytochemistry 34: 679–685

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Carpenter R, Sommer H, Saedler H, Coen ES (1985) Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J 4: 1625–1630

    PubMed  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1: 37–49

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37: 49–59

    Article  PubMed  CAS  Google Scholar 

  • Moore L, Warner G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2: 617–626

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Murayama T, Murayama H, Satoh Y, Ogasawara S (1996) Plant regeneration from protoplasts of Eustoma grandiflorum ( Griseb) Shinners. J Jpn Hortic Sci 65: 105–111 (in Japanese)

    Article  CAS  Google Scholar 

  • Ohshima M, Itoh H, Matsuoka M, Murakami T, Ohashi Y (1990) Analysis of stress-induced or salicylic acid-induced expression of the pathogenesis related la protein gene in transgenic tobacco. Plant Cell 2: 95–106

    PubMed  CAS  Google Scholar 

  • Okada K, Ohtani T (1993) Development of dwarf lisianthus using genetic engineering. Soshikibaiyo (Tissue culture) 19: 50–55 (in Japanese)

    Google Scholar 

  • Oono Y, Handa T, Kanaya K, Uchimiya H (1987) The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn J Genet 62: 501–505

    Article  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Schwinn KE, Davies KM, Deroles SC, Markham KR, Miller RM, Bradley JM, Manson DG, Given NK (1997) Expression of an Antirrhinum majus UDP-glucose: flavonoid-3-O-glucosyl transferase transgene alters flavonoid glycosylation and acylation in lisianthus (Eustoma grandiflorum Griseb.). Plant Sci 125: 53–61

    Article  CAS  Google Scholar 

  • Semeria L, Vaira AM, Accotto GP, Allavena A (1995) Genetic transformation of Eustoma grandiflorum Griseb. by microprojectile bombardment. Euphytica 85: 125–130

    Article  Google Scholar 

  • Semeria L, Ruffoni B, Rabaglio M, Genga A, Vaira AM, Accotto GP, Allavena A (1996) Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 47: 67–72

    Article  CAS  Google Scholar 

  • Senior I, Holford P, Cooley RN, Newbury HJ (1995) Transformation of Antirrhinum majus using Agrobacterium rhizogenes. J Exp Bot 46: 1233–1239

    Article  CAS  Google Scholar 

  • Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotype harbour binary vector T-DNA, but no Ri plasmid T-DNA. Theor Appl Genet 72: 770–777

    Article  CAS  Google Scholar 

  • Shinners LH (1957) Synopsis of the genus Eustoma (Gentianaceae). Southwest Nat 2: 38–43

    Article  Google Scholar 

  • Spena A, Schmulling T, Koncz C, Schell J (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899

    PubMed  CAS  Google Scholar 

  • Takahashi M, Bishihara M,Yamamura S, Nishizawa S, Irifune K, Morikawa H (1998) Stable transformation of Eustoma grandiflorum by particle bombardment. Plant Cell Rep 17: 504–507

    Article  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79: 140–146

    Article  CAS  Google Scholar 

  • Uchimiya H, Handa T, Brar DS (1989) Mini review: transgenic plants. J Biotechnol 12: 1–20

    Article  CAS  Google Scholar 

  • van der Krol AR, Lenting PE, Veenstra J, yen der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuije AR (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869

    Article  Google Scholar 

  • Weising K, Schell J, Kajl G (1988) Foreign genes in plants: transfer, structure, expression, and applications. Annu Rev Genet 22: 421–477

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Handa, T., Deroles, S.C. (2001). Transgenic Eustoma grandiflorum (Lisianthus). In: Bajaj, Y.P.S. (eds) Transgenic Crops III. Biotechnology in Agriculture and Forestry, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10603-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10603-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08643-4

  • Online ISBN: 978-3-662-10603-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics