Skip to main content

Production of Organic Acids by Fungi

  • Chapter
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Fungi, in particular aspergilli are well known for their potential to overproduce a variety of organic acids. These micro-organisms have an intrinsic ability to accumulate organic acids and it is generally assumed that this ability provides the fungi with an ecological advantage since they grow rather well at pH 3–5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids, e.g. citric, gluconic and itaconic acid. Table 1 lists the most important organic acids for which a production process employing fungi has been described. In this chapter we will discuss different aspects of organic acid production, including biochemistry, production and applications. Since citric acid is by far the most important organic acid, in production volume as well as in knowledge available, emphasis will be on production of citric acid by Aspergillus niger. Production of itaconic acid, gluconic acid, and other acids for which fungal production processes have been described will be discussed in less detail. Finally, the reader is referred to a number of excellent reviews that have been written on organic acid production by fungi (Kubicek and Röhr 1986; Mattey 1992; Röhr et al. 1992, 1996a-c; Zidwick 1992; Kristiansen et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba S, Matsuoka M (1979) Identification of a metabolic model: citrate production from glucose by Candida lipolytica. Biotechnol Bioeng 1: 1373–1386

    Article  Google Scholar 

  • Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973a) Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agric Biol Chem 37: 879–884

    Article  CAS  Google Scholar 

  • Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973b) Relationship between aconitate hydratase activity and citric acid productivity in fluoroacetatesensitive mutant strain of Candida lipolytica. Agric Biol Chem 37: 885–888

    Article  CAS  Google Scholar 

  • Arisan-Atac I, Kubicek CP (1996) Glycerol is not an inhibitor of mitochondria) citrate oxidation in Aspergillus niger. Microbiology 142: 2937–2942

    Article  CAS  Google Scholar 

  • Arisan-Atac I, Wolschek MF, Kubicek CP (1996) Trehalose6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol Lett 140: 77–83

    Article  CAS  Google Scholar 

  • Arnstein HRV, Bentley R (1953) The biosynthesis of kojic acid 1. Biochem J 54: 493–508

    CAS  Google Scholar 

  • Arts E, Kubicek CP, Röhr M (1987) Regulation of phosphofructokinase from Aspergillus niger: effect of fructose-2,6-bisphosphate on the action of citrate, ammonium ions and AMP. J Gen Microbial 133: 1195–1199

    CAS  Google Scholar 

  • Bajpai P, Agrawala PK, Vishwanathan L (1981) Enzymes relevant to kojic acid biosynthesis in Aspergillus flavus. J Gen Microbiol 127: 131–136

    CAS  Google Scholar 

  • Battat E, Peleg Y, Bercovitz A. Rokem JS Goldberg I (1991) Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng 37: 1108–1116

    Article  CAS  Google Scholar 

  • Begum AA, Choudhury N, Islam MS (1990) Citric acid fermentation by gamma-ray induced mutants of Aspergillus niger in different carbohydrate media.1 Ferment Bioeng 70: 286–288

    CAS  Google Scholar 

  • Bentley R, Thiessen CP (1957a) Biosynthesis of itaconic acid in Aspergillus terreus I. Tracer studies with C14-labeled substrates. J Biol Chem 226: 673–687

    CAS  Google Scholar 

  • Bentley R. Thiessen CP (1957b) Biosynthesis of itaconic acid in Aspergillus terreus II. Early stages in glucose dissimilation and the role of citrate. J Biol Chem 226: 689–701

    Google Scholar 

  • Bentley R, Thiessen CP (1957e) Biosynthesis of itaconic acid in Aspergillus terreus.III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J Biol Chem 226: 703–720

    Google Scholar 

  • Bercovitz A, Peleg Y, Battat E, Rokem JS. Goldberg I (1990) Localisation of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl Environ Microbial 56: 1594–1597

    CAS  Google Scholar 

  • Berovic M (1999) Scale-up of citric acid fermentation by redox potential control. Biotechnol Bioeng 64: 552–557

    Article  CAS  Google Scholar 

  • Blom RH, Pfeifer VF, Moyer AJ,Traufler DH, Conway HF, Crocker CK, Farison RE, Hannibal DV (1952) Sodium gluconate production. Fermentation with Aspergillus niger. Ind Eng Chem 44: 435–440

    CAS  Google Scholar 

  • Bloom SJ, Johnson MJ (1962) The pyruvate carboxylase of Aspergillus niger. J Biol Chem 237: 2718–2720

    CAS  Google Scholar 

  • Boddy LM, Berges T, Barreau C, Vainstain MH, Jobson MJ, Ballance DJ, Peberdy JF (1993) Purification and characterization of an Aspergillus niger invertase and its DNA sequence. Curr Genet 24: 60–66

    Article  CAS  Google Scholar 

  • Bohdziewicz J, Bodzek M (1994) Ultrafiltration preparation of pectinolytic enzymes from citric acid fermen-tation broth. Proc Biochem 29: 99–107

    Article  CAS  Google Scholar 

  • Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus terreus. J Bacterial 177: 3573–3578

    CAS  Google Scholar 

  • Clark DS, Ito K, Tymchuk P (1965) Effect of potassium ferrocyanide on the chemical composition of molasses mash used in the citric acid fermentation. Biotechnol Bioeng 7: 269–278

    Article  CAS  Google Scholar 

  • Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8: 465–471

    Article  CAS  Google Scholar 

  • Cleland WW, Johnson MJ (1954) Tracer experiments on the mechanism of citric acid formation by Aspergillus niger J Biol Chem 208: 679–692

    CAS  Google Scholar 

  • Cornish-Bowden A, Hofmeyer JHS, Cárdenas ML (1995) Strategies for manipulating metabolic fluxes in biotechnology. Bioorg Chem 23: 439–449

    Article  CAS  Google Scholar 

  • Currie JN (1917) The citric acid fermentation of A. niger. J Biol Chem 31: 15–37

    CAS  Google Scholar 

  • Dawson MW, Maddox IS, Brooks JD (1986) Effect of interruptions to the air supply on citric acid production by Aspergillus niger. Enzyme Microb Technol 8: 37–40

    Article  CAS  Google Scholar 

  • Dawson MW, Maddox IS, Boag IF, Brooks JD (1988) Application of fed-batch culture to citric acid production by Aspergillus niger: the effects of dilution rate and dissolved oxygen tension. Biotechnol Bioeng 32: 220–226

    Article  CAS  Google Scholar 

  • Eikmeier H, Rehm HJ (1984) Production of citric acid with immobilised Aspergillus niger. Appl Microbiol Biotechnol 20: 365–370

    Article  CAS  Google Scholar 

  • Federici F, Petruccioli M (1997) Immobilisation of filamentous fungi: a new frontier in the production of organic acids. Ital J Food Sci 9: 171–182

    CAS  Google Scholar 

  • Feir HA, Suzuki I (1969) Pyruvate carboxylase of Aspergillus niger: kinetic study of a biotin-containing enzyme. Can J Biochem 47: 697–710

    CAS  Google Scholar 

  • Fiedurek J. Rogalski J, Ilczuk Z, Leonowicz A (1986) Screening and mutagenesis of moulds for the improvement of glucose oxidase production. Enzyme Microb Technol 8: 734–736

    Google Scholar 

  • Finogenova TV, Shishkanova NV, Ermakova IT, Kataeva IA (1986) Properties of Candida lipolytica mutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. II. Synthesis of citric and isocitric acid by C. lipolytica mutants and peculiarities of their enzyme systems. Appl Microbiol Biotechnol 23: 378–383

    Article  CAS  Google Scholar 

  • Gangl IC. Weigand WA, Keller FA (1990) Economic comparison of calcium fumarate and sodium fumarate production of Rhizopus arrhizus. Appl Biochem Biotechnol 24 /25: 663–677

    Google Scholar 

  • Gluszcz P, Ledakowicz S (1999) Downstream processing in citric acid production. In: Kristiansen B, Mattey M, Linden J (eds) Citric acid biotechnology. Taylor and Francis, London, pp 135–148

    Google Scholar 

  • Gupta S, Sharma CB (1995) Citric acid fermentation by the mutant strain of the Aspergillus niger resistant to manganese ions inhibition. Biotechnol Lett 17: 269–274

    Article  CAS  Google Scholar 

  • Gyamerah MH (1995) Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl Microbiol Biotechnol 44: 20–26

    Article  Google Scholar 

  • Harmsen H. Kubicek-Pranz EM, Visser J, Röhr M, Kubicek CP (1992) Regulation of 6-phosphofructo-2-kinase from the citric acid producing fungus Aspergillus niger. Appl Microbiol Biotechnol 37: 784–787

    Google Scholar 

  • Hesse SJA. Ruijter GJG, Dijkema C, Visser J (2000) Measurement of intracellular (compartmental) pH by aP NMR in Aspergillus niger. J Biotechnol 77: 5–15

    Article  Google Scholar 

  • Hockertz S, Plönzig J, Auling G (1987a) Impairment of DNA formation is an early event in Aspergillus niger under manganese starvation. Appl Microbiol Biotechnol 25: 590–593

    Article  CAS  Google Scholar 

  • Hockertz S. Schmid J, Auling G (1987b) A specific transport system for manganese in the filamentous fungus Aspergillus niger. J Gen Microbiol 133: 2515–3519

    Google Scholar 

  • Jaklitsch WM, Kubicek CP, Scrutton MC (1991a) Intracellular organisation of citrate production in Aspergillus niger. Can J Microbiol 37: 823–827

    Article  CAS  Google Scholar 

  • Jaklitsch WM, Kubicek CP, Scrutton MC (1991b) The subcellular organisation of itaconate biosynthesis in Aspergillus terreus. J Gen Mierobiol 137: 533–539

    Article  CAS  Google Scholar 

  • King CJ (1992) Amine based system for carboxylic acids recovery. Chemtech 22: 285–291

    CAS  Google Scholar 

  • Kirimura K, Hirowatari Y. Usami S (1987) Alterations of respiratory systems in Aspergillus niger under the conditions of citric acid fermentation. Agr Biol Chem 51: 1299–1303

    Article  CAS  Google Scholar 

  • Kirimura K, Matsui T, Sugano S, Usami S (1996) Enhancement and repression of cyanide-insensitive respiration in Aspergillus niger. FEMS Microbiol Lett 141: 251–254

    Article  CAS  Google Scholar 

  • Kirimura K, Yoda M, Usami S (1999a) Cloning and expression of the cDNA encoding an alternative oxidase gene from Aspergillus niger W15–2223L. Curr Genet 34: 472–477

    Article  CAS  Google Scholar 

  • Kirimura K, Yusa S, Rugsaseel S. Nakagawa H, Osumi M, Usami S (1999b) Amylose-like polysaccharide accumulation and hyphal cell-surface structure in relation to citric acid production by Aspergillus niger in shake culture. Appl Mierobiol Biotechnol 52: 421–428

    CAS  Google Scholar 

  • Kisser M, Kubicek CP, Röhr M (1980) Influence of manganese on morphology and cell-wall composition of Aspergillus niger during citric acid fermentation. Arch Mierobiol 128: 26–33

    Article  CAS  Google Scholar 

  • Kontopidis G, Mattey M, Kristiansen B (1995) Citrate transport during the citric acid fermentation by Aspergillus niger. Biotechnol Lett 17: 1101–1106

    Article  CAS  Google Scholar 

  • Kristiansen B, Sinclair CG (1979) Production of citric acid in continuous culture. Biotechnol Bioeng 21: 297–315

    Article  CAS  Google Scholar 

  • Kristiansen B, Mattey M, Linden J (eds) (1999) Citric acid biotechnology. Taylor and Francis, London

    Google Scholar 

  • Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166: 283292

    Google Scholar 

  • Kubicek CP (1988) The role of the citric acid cycle in fungal organic acid fermentations. Biochem Soc Symp 54: 113–126

    Google Scholar 

  • Kubicek CP, Röhr M (1977) Influence of manganese on enzyme synthesis and citric acid accumulation by Aspergillus niger. Eur J Appl Microbiol 4: 167–173

    Article  CAS  Google Scholar 

  • Kubicek CP, Röhr M (1985) Aconitase and citric acid accumulation in Aspergillus niger. Appl Environ Microbiol 50: 1336–1338

    CAS  Google Scholar 

  • Kubicek CP, Rohr M (1986) Citric acid fermentation. Crit Rev Biotechnol 3: 331–373

    Article  CAS  Google Scholar 

  • Kubicek CP, Zehentgruber O, El-Kalak H, Röhr M (1980) Regulation of citric acid production by oxygen: effects of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur J Appl Microbiol Biotechnol 9: 101–116

    Article  CAS  Google Scholar 

  • Kubicek CP. Schreferl-Kunar G, Wöhrer W, Rohr M (1988) Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl Environ Microbiol 54:633–637

    Google Scholar 

  • Kubicek-Pranz EM, Mozelt M, Rohr M, Kubicek CP (1990) Changes in the concentration of fructose-2,6bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentrations. Biochim Biophys Acta 1033: 250–255 229

    Google Scholar 

  • Kwak MY, Rhee JS (1992) Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production. Biotechnol Bioeng 39: 903–906

    Article  CAS  Google Scholar 

  • La Nauze JM (1966) Aconitase and isocitric acid dehydrogenases in Aspergillus niger in relation to citric acid accumulation. J Gen Microbiol 44: 73–81

    Article  Google Scholar 

  • Legisa M, Bencina M (1994) Evidence for the activation of 6-phosphofructo-l-kinase by cAMP-dependent protein kinase in Aspergillus niger. FEMS Microbiol Lett 118: 327–334

    Article  CAS  Google Scholar 

  • Legia M, Mattey M (1986) Glycerol as an initiator of citric acid accumulation in Aspergillus niger. Enzyme Microb Technol 8: 607–609

    Article  Google Scholar 

  • Legisa M, Gradisnik-Grapulin M (1995) Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger. Appt Environ Microbiol 61: 2732–2737

    CAS  Google Scholar 

  • I.0 M, Brooks JD, Maddox IS (1997) Citric acid production by solid-state fermentation in a packed-bed reactor using Aspergillus niger. Enzyme Microb Technol 21: 392–397

    Google Scholar 

  • Ma H, Kubicek CP, Rohr M (1985) Metabolic effects of manganese deficiency in Aspergillus niger: evidence for increased protein degradation. Arch Microbiol 141: 266–268

    Article  CAS  Google Scholar 

  • Mark CG, Romano AH (1971) Properties of the hexose transport systems of Aspergillus nidulans. Biochim Biophys Acta 249: 216–226

    Article  CAS  Google Scholar 

  • Martin SM, Wilson PW (1951) Uptake of “CO, by Aspergillus niger in the formation of citric acid. Arch Biochem 27: 150–157

    Article  Google Scholar 

  • Mattey M (1992) The production of organic acids. Crut Rev Biotechnol 12: 87–132

    Article  CAS  Google Scholar 

  • McIntyre M. McNeil B (1997) Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme Microb Technol 20: 135–142

    Article  Google Scholar 

  • Meixner O, Mischak H, Kubicek CP, Rohr M (1985) Effects of manganese deficiency on plasma membrane lipid composition and glucose uptake in Aspergillus niger. FEMS Microbiol Lett 26: 271–274

    Article  CAS  Google Scholar 

  • Miall LM (1978) Organic acids. In: Rose AH (cd) Economic microbiology, vol 2: primary products of metabolism. Academic Press, London, pp 47–119

    Google Scholar 

  • Nabeshima S. Tanaka A, Fului S (1977) Effects of carbon sources on the levels of glyoxylate enzymes in nalkane utilizable yeasts. Agr Biol Chem 41: 275–285

    Google Scholar 

  • Netik A, Torres NV, Riol J-M, Kubicek CP (1997) Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326: 287–294

    Article  CAS  Google Scholar 

  • Neufeld R.1, Peleg Y, Rokem JS, Pines O. Goldberg I (1991) t-malic acid formation by immobilised Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb Technol 13: 991–996

    Google Scholar 

  • Osumi M, Miwa N, Teranishi Y, Tanaka A, Fului S (1974) Ultrastructure of Candida yeast grown on n-alkanes: appearance of microbodies and its relationship to high catalase activity. Arch Microbiol 99: 181–200

    Article  CAS  Google Scholar 

  • Panneman H, Ruijter GJG, Van den Broeck HC, Driever ETM, Visser J (1996) Cloning and biochemical characterisation of an Aspergillus niger glucokinasc. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur J Biochem 240: 518–525

    Google Scholar 

  • Panneman H, Ruijter GJG, Van den Broeck HC, Visser J (1998) Cloning and biochemical characterisation of Aspergillus niger hexokinase. The enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur J Biochem 258: 223–232

    Article  CAS  Google Scholar 

  • Pedersen H, Hjort C. Nielsen J (2000) Cloning and characterization of oah, the gene encoding oxaloacetate hydrolase in Aspergillus niger Mol Gen Genet 263: 281–286

    CAS  Google Scholar 

  • Peleg Y, Battat E. Scrutton MC, Goldberg I (1989) Isoenzyme pattern and subcellular localisation of enzymes involved in fumaric acid accumulation by Rhizopus oryzae. Appt Microbiol Biotechnol 32: 334–339

    CAS  Google Scholar 

  • Peleg Y. Rokem JS, Goldberg I, Pines 0 (1990) Inducible overexpression of the FUMI gene in Saccharomyces cerevisiae: localisation of fumarasc and efficient fumaric acid bioconversion to r -malic acid. Appt Environ Microbiol 56: 2777–2783

    Google Scholar 

  • Reuss M. Fröhlich S, Kramer B, Messerschmidt K, Pommerening G (1986) Coupling of microbial kinetics and oxygen transfer for analysis and optimization of glu-conic acid production with Aspergillus niger. Bioproc Eng 1: 79–91

    Google Scholar 

  • Röhr M. Kubicek CP, Zehentgruber O. Orthofer R (1987) Accumulation and partial re-consumption of polyols during citric acid fermentation by Aspergillus niger. Appt Microbiol Biotechnol 27: 235–239

    Google Scholar 

  • Röhr M, Kubicek CP, Kominek J (1992) Industrial acids and other small molecules. In: Bennett JW Klich MA (eds) Aspergillus: biology and industrial applications. Butterworth-Heinemann, Boston, pp 91–131

    Google Scholar 

  • Röhr M, Kubicek CP, Kominek J (1996a) Citric acid. In: Rehm HJ Reed G (eds) Biotechnology, vol 6: products of primary metabolism. Verlag Chemie, Weinheim, pp 308–345

    Google Scholar 

  • Rohr M, Kubicek CP, Kominek J (1996b) Gluconic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6: products of primary metabolism. Verlag Chemie, Weinheim, pp 347–362

    Google Scholar 

  • Rohr M, Kubicek CP, Kominek J (1996e) Further organic acids. In: Rehm HJ, Reed G (eds) Biotechnology. vol 6: products of primary metabolism. Verlag Chemie, Weinheim, pp 364–379

    Google Scholar 

  • Rugsaseel S. Kirimura K, Usami S (1993) Selection of mutants of Aspergillus niger showing enhanced productivity of citric acid from starch in shaking culture. J Ferment Bioeng 75: 226–228

    Google Scholar 

  • Ruijter GJG, Panneman H, Visser J (1997) Overexpression of phosphofructokinasc and pyruvate kinase in citric acid producing Aspergillus niger. Biochim Biophys Acta 1334: 317–326

    Article  CAS  Google Scholar 

  • Ruijter GJG, Van de Vondervoort PJI, Visser J (1999) Oxalic acid accumulation by Aspergillus niger. An oxalate non-producing mutant accumulates citric acid at pH 5 and in the presence of manganese. Microbiology 145: 2569–2576

    CAS  Google Scholar 

  • Ruijter GIG. Panneman H, Xu DB, Visser J (2000) Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol Lett 184:35–40

    Google Scholar 

  • Sarangbin S, Watanapokasin Y (1999) Yam bean starch: a novel substrate for citric acid production by the protease-negative mutant of Aspergillus niger. Carboh Pol 38: 219–224

    Article  CAS  Google Scholar 

  • Schrefcrl-Kunar G, Grotz M, Rohr M, Kubicek CP (1989) Increased citric acid production by mutants of Aspergillus niger with increased glycolytic capacity. FEMS Microbiol Lett 59: 297–300

    Article  Google Scholar 

  • Shankaranand VS, Lonsane BK (1994) Ability of Aspergillus niger to tolerate metal ions and minerals in a solid-state fermentation system for the production of citric acid. Proc Biochem 29: 29–37

    Article  CAS  Google Scholar 

  • Shu P, Johnson MJ (1948a) Citric acid production by submerged fermentation with Aspergillus niger. Ind Eng Chem 40: 1202–1205

    Article  CAS  Google Scholar 

  • Shu P, Johnson MJ (1948b) The interdependence of medium constituents in citric acid production by submerged fermentation. J Bacteriol 56: 577–585

    CAS  Google Scholar 

  • Soccol CR, Stonoga VI, Raimbault M (1994) Production of L-lactic acid by Rhizopus species. World J Microbiol Biotechnol 10: 433–435

    Article  CAS  Google Scholar 

  • Sokolov DM, Sharyshev AA, Finegenova TV (1995) Subcellular location of enzymes mediating glucose metabolism in various groups of yeasts. Biochemistry Moscow 60: 1325–1331

    Google Scholar 

  • Suzuki A, Sarangbin S, Kirimura K, Usami S (1996) Direct production of citric acid from starch by a 2deoxyglucose-resistant mutant strain of Aspergillus niger. J Ferment Bioeng 81: 320–323

    Article  CAS  Google Scholar 

  • Swart K, Van de Vondervoort PJI, Witteveen CFB, Visser J (1990) Genetic localization of a series of genes affecting glucose oxidase levels in Aspergillus niger. Curr Genet 18: 435–439

    Article  CAS  Google Scholar 

  • Szczodrak J, Ilczuk Z (1985) Effect of iron on the activity of aconitate hydratase and synthesis of citric acid by Aspergillus niger. Zentralbl Mikrobiol 140: 567–574

    CAS  Google Scholar 

  • Tabuchi T, Hara S (1970) Conversion of citrate fermentation to polyol fermentation in Candida lilolytica. J Agric Chem Soc Jpn 47: 485–489

    Google Scholar 

  • Takata I, Yamamoto K, Tosa T, Chibata I (1980) Immobilisation of Brevibacterium flavum with carrageenan and its application for continuous production of Lmalic acid. Enzyme Microb Technol 2: 30–36

    Article  CAS  Google Scholar 

  • Torres NV (1994a) Modelling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: I. Model definition and stability of the steady-state. Biotechnol Bioeng 44: 104–111

    Article  CAS  Google Scholar 

  • Torres NV (1994b) Modelling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: Il. Sensitivity analysis. Biotechnol Bioeng 44: 112–118

    Article  CAS  Google Scholar 

  • Torres N, Riol J-M, Wolschek M, Kubicek CP (1996a) Glucose transport by Aspergillus niger: the low affinity carrier is only formed during growth on high glucose concentrations. Appl Microbiol Biotechnol 44: 790–794

    CAS  Google Scholar 

  • Torres NV, Voit EO, Gonzalez-Alarm C (1996b) Optimisation of nonlinear biotechnological processes with linear programming: application to citric acid production by Aspergillus niger. Biotechnol Bioeng 49: 247–258

    Article  CAS  Google Scholar 

  • Tran CT, Mitchell DA (1995) Pineapple waste–a novel substrate for citric acid production by solid-state fermentation. Biotechnol Lett 17: 1107–1110

    Article  CAS  Google Scholar 

  • Wayman FM, Mattey M (2000) Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol Bioeng 67: 451–456

    Article  CAS  Google Scholar 

  • Whittington H, Kerry-Williams S, Bidgood K, Dodsworth N, Peberdy JF, Dobson M, Hinchliffc E, Balance DJ (1990) Expression of the Aspergillus niger glucose oxidase gene in A. niger, A. nidulans and Saccharomyces cerevisiae. Curr Genet 18: 531–536

    Article  CAS  Google Scholar 

  • Witteveen CFB, Van de Vondervoort PJI, Swart K, Visser J (1990) Glucose oxidase overproducing and negative mutants of Aspergillus niger. Appl Microbiol Biotechnol 33: 683–686

    Article  CAS  Google Scholar 

  • Witteveen CFB, Veenhuis M, Visser J (1992) Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl Environ Microbiol 58: 1190–1194

    CAS  Google Scholar 

  • Witteveen CFB, Van de Vondervoort PJI, Van den Broeck HC, Van Engelenburg FAC, De Graaff LH, Hillebrand MHBC, Schaap PJ, Visser J (1993) Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Curr Genet 24: 408–416

    Article  CAS  Google Scholar 

  • Wongchai V, Jefferson WE Jr (1974) Pyruvate carboxylase from Aspergillus niger: partial purification and some properties. Fed Proc 33: 13–78

    Google Scholar 

  • Woronick CL, Johnson MJ (1960) Carbon dioxide fixation by cell-free extracts of Aspergillus niger. J Biol Chem 235: 9–15

    CAS  Google Scholar 

  • Xu D-B, Madrid CP, Röhr, M, Kubicek CP (1989) Influence of type and concentration of the carbon source on citric acid production by Aspergillus niger. Appl Microbiol Biotechnol 30: 553–558

    CAS  Google Scholar 

  • Zahorski B (1913) US Patent 1066358

    Google Scholar 

  • Zehentgruber O, Kubicek CP, Röhr M (1980) Alternative respiration of Aspergillus niger. FEMS Microbiol Lett 8: 71–74

    Article  CAS  Google Scholar 

  • Zidwick MJ (1992) Organic acids. In: Finkelstein DB, Ball C (eds) Biotechnology of filamentous fungi. Butterworth-Heinemann, Boston, pp 303–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruijter, G.J.G., Kubicek, C.P., Visser, J. (2002). Production of Organic Acids by Fungi. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics