Skip to main content

Regulation of Carbon Metabolism in Mycelial Fungi

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Carbon catabolite repression refers to the mechanism whereby repressing carbon sources are used preferentially to less readily metabolized carbon sources due to reduced synthesis of the latter in the presence of the former. The best-studied case of carbon catabolite repression, at the genetical, biochemical, and molecular level, is that of the lactose operon in Escherichia coli, where there is a sophisticated understanding of the molecular mechanism, and of interactions with the pathwayspecific induction mechanism for several operons, in particular that for lactose utilization (Busy 1986). However, there is neither reason a priori, or evidence a posteriori to suggest that the mechanism should be conserved between prolaryotes and eukaryotes. In eukaryotes, worked aimed at eliciting the been undertaken mainly in the yeast saccharomyces cerevisiae and in some mycelia fungi. In yeast a large number of genes have been implicated in the repression mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54: 352–362

    Google Scholar 

  • Arst HN, Bailey CR (1977) The regulation of carbon metabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus nidulans. Academic Press, London, pp 131–146

    Google Scholar 

  • Arst HN, Cove DJ (1973) Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126: 111–141

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, MacDonald DW (1975) A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254: 26–34

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, MacDonald DW, Jones SA (1980) Regulation of proline transport in Aspergillus nidulans. J Gen Microbiol 116: 285–294

    CAS  Google Scholar 

  • Arst HN, Tollervey D, Dowzer CEA, Kelly JM (1990) An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite repression. Mol Microbiol 4: 851–854

    Article  PubMed  CAS  Google Scholar 

  • Bailey CR, Arst HN (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51: 573–577

    Article  PubMed  CAS  Google Scholar 

  • Beni RK, Whittington H, Roberts CF, Hawkins AR (1987) Isolation and characterization of the positively acting regulatory gene, qutA, from Aspergillus nidulans. Nucleic Acids Res 15: 7991–8001

    Article  Google Scholar 

  • Berg JM (1975) Spl and the superfamily of zinc finger proteins with guanine-rich binding sites. Proc Natl Acad Sci USA 89:11109–11110

    Google Scholar 

  • Blumberg H, Eisen A, Sledziewski DB, Young ET (1987) Two zinc lingers of the yeast regulatory protein shown by genetic evidence to be essential for its function. Nature 7: 443–445

    Article  Google Scholar 

  • Busby SJW (1986) Positive regulation in gene expression. In: Booth IR, Higgins CF (eds) Regulation of gene expression 25 years on. Cambridge Univ Press, London

    Google Scholar 

  • Call KM, Glasser T, Ho CY, Buckler AJ, Pelletier P, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C, Housman DE (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60: 509–520

    Article  PubMed  CAS  Google Scholar 

  • Carlson M (1987) Regulation of sugar utilization in Saccharomyces species. J Bacteriol 169: 4873–4877

    PubMed  CAS  Google Scholar 

  • Chavrier P, Lemaire P, Releleant R, Bravo R, Charney P (1988) Characterization of a mouse multi gene family that encodes zinc finger structures. Mol Cell Biol 8: 13191326

    Google Scholar 

  • Creaser EH, Porter RL, Britt KA, Pateman JA, Doy CH (1985) Purification and preliminary characterization of alcohol dehydrogenase from Aspergillus nidulans. Biochem J 225: 449–454

    PubMed  CAS  Google Scholar 

  • Crosby SD, Puetz JJ, Simburger KS, Fahrner TJ, Milbrandt J (1991) The early response gene NGFI -C encodes a zinc finger transcriptional activator and is a member of the GCGGGGGCG ( GSG) element binding protein factor. Mol Cell Biol 11: 3835–3841

    Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13: 407–415

    PubMed  CAS  Google Scholar 

  • Davies RW (1991) Molecular biology of a high-level recombinant protein production system in Aspergillus. In: Leong SA, Berka RM (eds) Molecular industrial mycology. Systems and applications for filamentous fungi. Dekker, New York, pp 45–58

    Google Scholar 

  • Davis MA, Hynes MJ (1991) Regulatory circuits in Aspergillus nidulans. In: Bennett JW, Lasure LL (eds) More gene manipulation in fungi. Academic Press, San Diego, pp 151–189

    Google Scholar 

  • Devchand M, Gwynne DI (1991) Expression of heterologous proteins in Aspergillus nidulans. J Biotechnol 17: 310

    Article  Google Scholar 

  • Dowzer CEA (1991) The cloning and preliminary characterization of the creA gene from Aspergillus nidulans. PhD Thesis, Univ Adelaide, Australia

    Google Scholar 

  • Dowzer CEA, Kelly JM (1989) Cloning of creA from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459

    Google Scholar 

  • Dowzer CEA, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709

    Google Scholar 

  • Drysdale MR, Kolze SE, Kelly JM (1993) The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene. 130:241–245

    Google Scholar 

  • Espeso EA, Penalva MA (1994) In vitro binding of the two-finger repressor CreA to several consensus and non-consensus sites at the ipnA upstream region is context dependent. FEBS Lett 342: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Tilburn J, Arst HN, Penalva MA (1993) pH regulation is a major determinant in expression of a fungal penicilin biosynthetic gene. EMBO J 12: 3947–3956

    Google Scholar 

  • Felenbok B (1991) The ethanol utilization regulation of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J Biotechnol 17:11–18

    Google Scholar 

  • Felenbok B, Sequeval D, Mathieu M, Sibley S, Gwynne DI, Davies RW (1988) The ethanol regulon in Aspergillus nidulans: characterization and sequence of the positive regulatory gene, alcR. Gene 73:385–396

    Google Scholar 

  • Felenbok B, Sophianopoulou V, Mathieu M, Sequeval D, Kulmburg P, Diallinas G, Scazzocchio C (1989) Regulation of genes involved in the utilization of carbon sources in Aspergillus nidulans. In: Nevalainen H, Penttila M (eds) Foundation for biotechnical and industrial fermentation research. Proc EMBO-Alko Worksh Mol Biol filamentous fungi, Helsinki, 6: 73–83

    Google Scholar 

  • Felenbok B, Sequeval D, Judewicz N, Mathieu M, Lenouvel F, Prangé T, Scazzocchio C, Dowzer C, Kelly J, Kulmburg P (1991) Control of the ethanol regulon in Aspergillus nidulans. In: Stahl U, Tudzynski P (eds) Molecular biology of filamentous fungi. Proc 4th EMBO Meet, pp 167–176

    Google Scholar 

  • Felenbok B, Sealy-Lewis HM (1994) Alcohol metabolism. In: Martinelli S, Kinghorn JR (eds) Genetics and physiology of Aspergillus nidulans, vol 29. Elsevier, Netherlands Amsterdam, pp 141–179

    Google Scholar 

  • Fillinger S, Panozzo C, Mathieu M, Felenbok B The basal level of transcription of the alc genes in the ethanol regulon in Aspergillus nidulans is controlled both by the specific transactivator A1cR and the general carbon catabolite repressor CreA. FEBS Lett (in press)

    Google Scholar 

  • Frankel DG (1982) Carbohydrate metabolism. In: Strathern JN, Jones EW, Broach JR (eds) The molecular

    Google Scholar 

  • biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Lab, Cold Spring Harbor, New York, pp 1–37

    Google Scholar 

  • Freemont PS, Lane AN, Sanderson MR (1991) Structural aspects of protein-DNA recognition. Biochem J 278: 123

    Google Scholar 

  • Gancedo JM, Gancedo C (1986) Catabolite repression mutants of yeast. FEMS Microbiol Rev 32: 179–187

    CAS  Google Scholar 

  • Geever RF, Huiet L, Baum JA, Tyler BM, Patel VB, Rutledge BJ, Case ME, Giles NH (1989) DNA sequence, organization and regulation of the qa gene cluster in Neurospora crassa. J Mol Biol 207: 15–34

    Article  PubMed  CAS  Google Scholar 

  • Gwynne DI, Buxton FP, Sibley S, Davies RW, Lockington RA, Scazzocchio C, Sealy-Lewis HM (1987) Comparison of the cis-acting control regions of two co-ordinately controlled genes involved in ethanol utilization in Aspergillus nidulans.Gene 51: 205–216

    Article  CAS  Google Scholar 

  • Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, Douglass EC, Housman DE (1990) An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ Tumor. Cell 61: 12571269

    Google Scholar 

  • Hartshorne TA, Blumberg AH, Young ET (1986) Sequence homology of the yeast ADR1 with Xenopus transcription factor ILIA. Nature 320: 283–287

    Article  PubMed  CAS  Google Scholar 

  • Hastie ND (1992) Dominant negative mutations in the Wilms tumor (WT1) gene cause Denys-Drash syndrome—proof that a tumor suppressor gene plays a crucial role in normal genitourinary development. Human Mol Genet 1: 293–295

    Article  CAS  Google Scholar 

  • Hynes MJ (1970) Induction and repression of amidase en- zymes in Aspergillus nidulans. J Bacteriol 103: 482–487

    PubMed  CAS  Google Scholar 

  • Hynes MJ, Kelly JM (1977) Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet 150:193–204

    Google Scholar 

  • Hynes MJ (1994) Regulation of acetamide utilization. In: Martinelli S, Kinghorn JR (eds) Genetics and physiology of Aspergillus nidulans, vol 25. Elsevier, Amsterdam, pp 279–321

    Google Scholar 

  • Jacobs GH (1992) Determination of the base recognition positions of zinc fingers from sequence analysis. EMBO J 11: 4507–4517

    PubMed  CAS  Google Scholar 

  • Johnson PF, McKnight SL (1989) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799839

    Google Scholar 

  • Johnston M, Carlson M (1992) The molecular and cellular biology of the yeast Saccharomyces: gene expression, vol II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 193–281

    Google Scholar 

  • Kelly JM (1980) Pleiotropic mutants of Aspergillus nidulans affected in carbon metabolism. PhD Thesis, La Trobe Univ, Australia

    Google Scholar 

  • Kelly JM, Hynes MJ (1977) Increased and decreased sensitivity to carbon catabolite repression of enzymes of acetate metabolism in mutants of Aspergillus nidulans. Mol Gen Genet 156: 87–92

    Article  PubMed  CAS  Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HN (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9: 1353–1364

    Google Scholar 

  • Kulmburg P (1991) Mecanisme d’induction et de repression catabolique du regulon ethanol chez Aspergillus nidulans. PhD Thesis, Univ Paris-Sud XI, Orsay

    Google Scholar 

  • Kulmburg P, Prange T, Mathieu M, Sequeval D, Scazzocchio C, Felenbok B (1991) Correct intron splicing generates a new type of putative zinc finger domain in a transcriptional activator of Aspergillus nidulans. FEBS Lett 280: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Kulmburg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B (1992a) Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 12: 1932–1939

    PubMed  CAS  Google Scholar 

  • Kulmburg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B (1992b) Specific binding sites for the activator protein, ALCR, in the alcA promoter of the ethanol regulon of Aspergillus nidulans. J Biol Chem 267: 211462 1153

    Google Scholar 

  • Kulmburg P. Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) The specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor-mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7: 847–857

    Google Scholar 

  • Lockington RA, Sealy-Lewis HM, Scazzocchio C, Davies RW (1985) Cloning and characterization of the ethanol utilization regulon of Aspergillus nidulans. Gene 33: 137149

    Google Scholar 

  • Lockington RA, Scazzocchio C, Sequeval D. Mathieu M, Felenbok B (1987) Regulation of alcR, the positive regulatory gene of the ethanol utilization regulon of Aspergillus nidulans. Mol Microbiol 1: 275–281

    CAS  Google Scholar 

  • Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: structure of a protein DNA complex. Nature 356: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Mathieu M, Felenbok B (1994) The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through a competition with the ALCR specific transactivator. EMBO J 13: 4022–4027

    PubMed  CAS  Google Scholar 

  • McCullough W, Payton MA, Roberts CF (1977) Carbon metabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic Press, London, pp 97–129

    Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc binding domains in the protein transcription factor ILIA from Xenopus oocytes. EMBO J 4: 1609–1614

    PubMed  CAS  Google Scholar 

  • Mylin M, Bhat P, Hopper JF (1989) Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev 3: 1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Nardelli J, Gibson TJ, Vesque C, Charnay P (1991) Base sequence discrimination by zinc-finger DNA-binding domains. Nature 349: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Nardelli J, Gibson TJ, Vesque C, Charnay P (1992) Zinc finger-DNA recognition: analysis of base specificity by site directed mutagenesis. Nucleic Acids Res 20: 41374144

    Google Scholar 

  • Nehlin JO, Ronne H (1990) Yeast MIGI repressor is related to the mammalian early growth response and Wilms’ tumor finger proteins. EMBO J 9: 2891–2898

    PubMed  CAS  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1991) The control of yeast GAL genes by MIGI repressor: a transcriptional cascade in the glucose response. EMBO J 10: 3373–3377

    PubMed  CAS  Google Scholar 

  • Page MM (1971) Genetics and biochemical studies of the catabolism of amines and alcohols in Aspergillus nidulans. PhD Thesis, Cambridge, UK

    Google Scholar 

  • Patel VB, Giles NH (1985) Autogenous regulation of the positive regulatorye qa-IF gene in Neurospora crassa. Mol Cell Biol 5: 3593–3599

    PubMed  CAS  Google Scholar 

  • Pateman JA, Doy CH, Olsen JE, Norris U, Creaser EH, Hynes MJ (1983) Regulation of alcohol dehydrogenase and aldehyde dehydrogenase in Aspergillus nidulans. Proc R Soc Lond Series B 217: 243–264

    Article  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger DNA recognition: crystal structure of a Zif268-DNA complex at 2.1. Science 252: 809–817

    Article  PubMed  CAS  Google Scholar 

  • Pickett M, Gwynne D1, Buxton FP, Elliott R, Davies RW, Lockington RA, Scazzocchio C, Sealy-Lewis HM (1987) Cloning and characterization of the aldA gene of Aspergillus nidulans. Gene 51: 217–226

    Article  PubMed  CAS  Google Scholar 

  • Roberts TJ, Martinelli S, Scazzocchio C (1979) Allele specific, gene unspecific, suppressors in Aspergillus nidulans. Mol Gen Genet 177: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Romano AH. Kornberg HL (1968) Regulation of sugar utilization by Aspergillus nidulans. Biochem Biophys Acta 158: 491–493

    Google Scholar 

  • Romano AH, Kornberg HL (1969) Regulation of sugar uptake by Aspergillus nidulans. Proc R Soc Lond Ser B 173: 475–490

    Article  CAS  Google Scholar 

  • Ronne H (1995) Glucose repression in fungi. Trends Genet 11: 12–17

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Hishinuma F (1988) Isolation and characterization of mutants which show an oversecretion phenotype in Saccharomyces cerevisiae. Genetics 119: 499–506

    PubMed  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Kondou S, Chibazakura T, Hishinuma F (1990) Structure and molecular analysis of RGRI, a gene required for glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10: 4130–4138

    PubMed  CAS  Google Scholar 

  • Scazzocchio C (1994) The proline utilisation pathway, history and beyond. In: Martinelli S, Kinghorn JR (eds) Genetics and physiology of Aspergillus nidulans, vol 29. Elsevier, Amsterdam, pp 259–277

    Google Scholar 

  • Scazzocchio C, Gavrias V, Cubero B. Panozzo C, Mathieu M, Felenbok B (1995) Carbon catabolite repression in Aspergillus nidulans. Can J Bot 73 (In press)

    Google Scholar 

  • Sealy-Lewis HM, Lockington RA (1995) Regulation of two alcohol dehydrogenases in Aspergillus nidulans. Curr Genet 8: 253–259

    Article  Google Scholar 

  • Sequeval D. Felenbok B (1994) Relationships between zinc content and DNA-binding activity of the DNA-binding motif of the transcription factor ALCR in Aspergillus nidulans. Mol Gen Genet 241: 33–39

    Google Scholar 

  • Silver PA (1991) How proteins enter the nucleus. Cell 64: 489–497

    Article  PubMed  CAS  Google Scholar 

  • Sophianopoulou V, Suàrez T, Diallinas G, Scazzocchio C (1993) Operator derepressed mutations in the praline utilization cluster of Aspergillus nidulans. Mol Gen Genet 326: 209–213

    Article  Google Scholar 

  • Sukhatme VP, Cao X, Chang LC, Tsai-Morris CH, Stamenkovich D. Ferreira PCP. Cohen DR, Edwards SA, Snows TB, Curran T, Le Beau MM, Adamson ED (1988) A zinc finger encoding gene coregulated with cfos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by SSN6-TUPI is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92: 3132–3136

    Article  PubMed  CAS  Google Scholar 

  • Thukral SK, Morrison ML, Young ET (1991) Alanine scanning site-directed mutagenesis of the zinc fingers of transcription factor ADR1: residues that contact DNA and that transactivate. Proc Natl Acad Sci USA 88: 91889192

    Google Scholar 

  • Thukral SK, Morrison ML, Young ET (1992) Mutations in the zinc fingers of ADR1 that change the specificity of DNA binding and transactivation. Mol Cell Biol 12: 2784–2792

    PubMed  CAS  Google Scholar 

  • Trumby RJ (1992) Glucose repression in Saccharomyces cerevisiae. Mol Microbiol 6: 15–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Felenbok, B., Kelly, J.M. (1996). Regulation of Carbon Metabolism in Mycelial Fungi. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10367-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10367-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10369-2

  • Online ISBN: 978-3-662-10367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics