Skip to main content
Log in

Nitrogen metabolite repression in Aspergillus nidulans

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In Aspergillus nidulans, mutations, designated areAr, can result in the inability to utilise a wide variety of nitrogen sources including amino acids, purines, amides, nitrate, and nitrite, whilst not affecting growth on ammonium. Other allelic areA mutations, designated areAd, lead to derepression of one or more activities which are ammonium repressible in wild type (areA+) strains, whilst not affecting their inducibility. Various areA mutations exhibit a wide variety of phenotypes: areAr alleles can be temperature sensitive on some nitrogen sources while not on others, and different alleles can be temperature sensitive for utilisation of different nitrogen sources. areAd alleles can be derepressed for one ammonium-repressible activity, be normally repressible for another, and lead to abnormally low levels for a third. Once again each areAd allele has its own highly specific phenotype. The inability of areAr strains to utilise most nitrogen sources is paralleled by low activities of certain ammonium-repressible enzymes. areAr mutations appear to be epistatic to some but not all regulatory mutations leading to constitutive synthesis of inducible enzymes and also epistatic to gdhA mutations which lead both to loss of NADP-linked glutamate dehydrogenase and to derepression of ammonium-repressible activities.

areAr mutations do not interfere with repair of a large number of auxotrophies in double mutants. Furthermore, although areAr mutations prevent utilisation of L-arginine, L-ornithine, and L-α-amino-n-butyrate as nitrogen sources, they do not prevent the metabolism of these compounds necessary for repairing auxotrophies for proline and isoleucine in the appropriate double mutants. Utilisation of acetamide and most amino acids as carbon or carbon and nitrogen sources is unaffected by areAr mutations, and areAr strains are able to utilise acetamide and L-proline (but not other amino acids) as nitrogen sources in the presence of non-catabolite-repressing carbon sources such as L-arabinose, glycerol, melibiose, and lactose. Suppressor mutations, designated creAd, probably leading to loss of carbon catabolite repression, allow utilisation of acetamide and proline as nitrogen sources in areAr double mutants in the presence of carbon catabolite-repressing carbon sources. creAd mutations allow ethanol to serve as a source of acetate for pyruvate dehydrogenaseless (pdhA) strains in the presence of carbon catabolite-repressing carbon sources, whereas pdhA single mutants respond to ethanol as sole carbon source only in the presence of non-carbon catabolite-repressing carbon sources. Specific suppressor mutations, designated amd d and prn d, allow utilisation of acetamide or proline, respectively, in areAr double mutants.

The areA locus can be interpreted as specifying a protein which is capable of (and in most cases essential for) allowing the synthesis of a number of enzymes of nitrogen metabolism but which cannot function in the presence of ammonium (i.e., as specifying a positive regulatory element which mediates ammonium repression) although the possibility that the areA product also plays a negative regulatory role cannot at present be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelberg, E. A., Mandel, M., Chen, G. C. C.: Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem. biophys. Res. Commun. 18, 788–795 (1965)

    Google Scholar 

  • Alderson, T., Scazzocchio, C.: A system for the study of interlocus specificity for both forward and reverse mutation in at least eight gene loci in Aspergillus nidulans. Mutation Res. 4, 567–577 (1967)

    Google Scholar 

  • Anthony, C., Cook, R. J.: Regulation of methylamine transport during germination of Aspergillus nidulans. J. gen. Microbiol. 77, vii-viii (1973)

    Google Scholar 

  • Arst, H. N., Jr.: Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature (Lond.) 219, 268–270 (1968)

    Google Scholar 

  • Arst, H. N., Jr., Cove, D. J.: Methylammonium resistance in Aspergillus nidulans. J. Bact. 98, 1284–1293 (1969)

    Google Scholar 

  • Arst, H. N., Jr., MacDonald, D. W.: A mutant of Aspergillus nidulans lacking NADP-linked glutamate dehydrogenase. Molec. gen. Genet. 122, 261–265 (1973)

    Google Scholar 

  • Arst, H. N., Jr., MacDonald, D. W., Cove, D. J.: Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Molec. gen. Genet. 108, 129–145 (1970)

    Google Scholar 

  • Arst, H. N., Jr., Page, M. M.: Mutants of Aspergillus nidulans altered in the transport of methylammonium and ammonium. Molec. gen. Genet. 121, 239–245 (1973)

    Google Scholar 

  • Bainbridge, B. W.: Genetic analysis of an unequal chromosomal translocation in Aspergillus nidulans. Genet. Res. 15, 317–326 (1970)

    Google Scholar 

  • Clutterbuck, A. J.: Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J. gen. Microbiol. 70, 423–435 (1972)

    Google Scholar 

  • Clutterbuck, A. J., Cove, D. J.: The genetic loci of Aspergillus nidulans. In: CRC handbook of microbiology, vol. IV, eds. A. I. Laskin and H. Lechevalier. Cleveland, Ohio: Chemical Rubber Co., in the press

  • Cohen, B. L.: Ammonium repression of extracellular protease in Aspergillus nidulans. J. gen. Microbiol. 71, 293–299 (1972)

    Google Scholar 

  • Cohen, B. L.: Control of extracellular protease in Aspergillus nidulans. Heredity 31, 132–133 (1973)

    Google Scholar 

  • Condamine, H.: Mutants des voies de biosynthèse et de dégradation de la proline chez E. coli K12. Ann. Inst. Pasteur 120, 9–22 (1971)

    Google Scholar 

  • Cotton, F. A., Wilkinson, G.: Advanced inorganic chemistry, p. 321. New York: Interscience Publishers 1962

    Google Scholar 

  • Cove, D. J.: The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 113, 51–56 (1966)

    Google Scholar 

  • Cove, D. J.: Evidence for a near limiting intracellular concentration of a regulator substance. Nature (Lond.) 224, 272–273 (1969)

    Google Scholar 

  • Cove, D. J.: Control of gene action in Aspergillus nidulans. Proc. roy. Soc. B 176, 267–275 (1970)

    Google Scholar 

  • Cove, D. J.: Chlorate toxicity in the fungus Aspergillus nidulans. Biochem. J. 127, 19P (1972)

  • Cove, D. J., Arst, H. N., Jr., Scazzocchio, C.: Regulation of gene activity in Aspergillus nidulans. Advanc. molec. Genet. 1, in the press

  • Cybis, J., Piotrowska, M., Weglenski, P.: Control of ornithine-transcarbamylase formation in Aspergillus nidulans. Bull. Acad. pol. Sci., Ser. Sci. Biol. 18, 669–672 (1970)

    Google Scholar 

  • Cybis, J., Piotrowska, M., Weglenski, P.: Genetic control of the arginine pathways in Aspergillus nidulans. Molec. gen. Genet. 118, 273–277 (1972)

    Google Scholar 

  • Darlington, A. J., Scazzocchio, C.: Use of analogues and the substrate-sensitivity of mutants in the analysis of purine uptake and breakdown in Aspergillus nidulans. J. Bact. 93, 937–940 (1967)

    Google Scholar 

  • Dendinger, S., Brill, W. J.: Regulation of proline degradation in Salmonella typhimurium. J. Bact. 103, 144–152 (1970)

    Google Scholar 

  • Dubois, E., Grenson, M., Wiame, J. M.: Release of the “ammonia effect” on three catabolic enzymes by NADP-specific glutamate dehydrogenaseless mutations in Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 50, 967–972 (1973)

    Google Scholar 

  • Elorza, M. V., Arst, H. N., Jr.: Sorbose resistant mutants of Aspergillus nidulans. Molec. gen. Genet. 111, 185–193 (1971)

    Google Scholar 

  • Garrett, R. H.: The induction of nitrite reductase in Neurospora crassa. Biochim. biophys. Acta (Amst.) 264, 481–489 (1972)

    Google Scholar 

  • Gravel, R. A., Käfer, E., Niklewicz-Borkenhagen, A., Zambryski, P.: Genetic and accumulation studies in sulfite-requiring mutants of Aspergillus nidulans. Canad. J. Genet. Cytol. 12, 831–840 (1970)

    Google Scholar 

  • Grenson, M., Hou, C.: Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of Saccharomyces cerevisae. Biochem. biophys. Res. Commun. 48, 749–756 (1972)

    Google Scholar 

  • Hackette, S. L., Skye, G. E., Burton, C. E., Segel, I. H.: Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate. J. biol. Chem. 245, 4241–4250 (1970)

    Google Scholar 

  • Holl, F. B., Scazzocchio, C.: Immunological differences between inducible and constitutive xanthine dehydrogenases in Aspergillus nidulans. Fed. Eur. Biochem. Soc. Lett. 12, 51–53 (1970)

    Google Scholar 

  • Hollomon, W. K., Dekker, C. A.: Control by cesium and intermediates of the citric acid cycle of extracellular ribonuclease and other enzymes involved in the assimilation of nitrogen. Proc. nat. Acad. Sci. (Wash.) 68, 2241–2245 (1971)

    Google Scholar 

  • Hynes, M. J.: Induction and repression of amidase enzymes in Aspergillus nidulans. J. Bact. 103, 482–487 (1970)

    Google Scholar 

  • Hynes, M. J.: Mutants with altered glucose repression of amidase enzymes in Aspergillus nidulans. J. Bact. 111, 717–722 (1972)

    Google Scholar 

  • Hynes, M. J., Pateman, J. A. J.: The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. I. Mutants able to utilize acrylamide. Molec. gen. Genet. 108, 97–106 (1970a)

    Google Scholar 

  • Hynes, M. J., Pateman, J. A. J.: The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. II. Mutants resistant to fluoroacetamide. Molec. gen. Genet. 108, 107–116 (1970b)

    Google Scholar 

  • Hynes, M. J., Pateman, J. A.: The use of amides as nitrogen sources by Aspergillus nidulans. J. gen. Microbiol. 63, 317–324 (1970c).

    Google Scholar 

  • Käfer, E.: An 8-chromosome map of Aspergillus nidulans. Advanc. Genet. 9, 105–145 (1958)

    Google Scholar 

  • Kinghorn, J. R., Pateman, J. A.: NAD and NADP L-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J. gen. Microbiol., in the press (1973a)

  • Kinghorn, J. R., Pateman, J. A.: The regulation of nicotinamide-adenine-dinucleotide-glutamate dehydrogenase in Aspergillus nidulans. Biochem. Soc. Trans. 1, 675–676 (1973b)

    Google Scholar 

  • Layne, E.: Spectrophotometric and turbidimetric methods for measuring proteins. In: Methods in enzymology, vol. III, p. 447–454, eds. S. P. Colowick and N. O. Kaplan. New York: Academic Press 1957

    Google Scholar 

  • Lewis, C. M., Fincham, J. R. S.: Regulation of nitrate reductase in the basidiomycete Ustilago maydis. J. Bact. 103, 55–61 (1970a)

    Google Scholar 

  • Lewis, C. M., Fincham, J. R. S.: Genetics of nitrate reductase in Ustilago maydis. Genet. Res. 16, 151–163 (1970b)

    Google Scholar 

  • Lundgren, D. W., Ogur, M., Yuen, S.: The isolation and characterization of a Saccharomyces mutant deficient in Δ 1-pyrroline-5-carboxylate dehydrogenase activity. Biochim. biophys. Acta (Amst.) 286, 360–362 (1972)

    Google Scholar 

  • McCully, K. S., Forbes, E.: The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352–359 (1965)

    Google Scholar 

  • Millington-Ward, A. M., Koops, F. B. J., van der Mark-Iken, C.: Further data on the polarity of the paba-1 locus of Aspergillus nidulans. Genetica 42, 13–24 (1971)

    Google Scholar 

  • Page, M. M.: Genetic and biochemical studies on the catabolism of amines and alcohols in Aspergillus nidulans. Ph.D. Thesis, University of Cambridge (1971)

  • Page, M. M., Cove, D. J.: Alcohol and amine catabolism in the fungus Aspergillus nidulans. Biochem. J. 127, 17P (1972)

  • Pateman, J. A., Cove, D. J.: Regulation of nitrate reduction in Aspergillus nidulans. Nature (Lond.) 215, 1234–1237 (1967)

    Google Scholar 

  • Pateman, J. A., Kinghorn, J. R., Dunn, E., Forbes, E.: Ammonium regulation in Aspergillus nidulans. J. Bact. 114, 943–950 (1973)

    Google Scholar 

  • Piotrowska, M., Sawicki, M., Weglenski, P.: Mutants of the arginine-proline pathway in Aspergillus nidulans. J. gen. Microbiol. 55, 301–305 (1969)

    Google Scholar 

  • Pontecorvo, G., Käfer, E.: Genetic analysis based on mitotic recombination. Advanc. Genet. 9, 71–104 (1958)

    Google Scholar 

  • Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D., Bufton, A. W. J.: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953)

    Google Scholar 

  • Pritchard, R. H.: The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9, 343–371 (1955)

    Google Scholar 

  • Putrament, A., Rozbicka, T., Wojciechowska, K.: The highly polarized recombination pattern within the methA gene of Aspergillus nidulans. Genet. Res. 17, 125–131 (1971)

    Google Scholar 

  • Romano, A. H., Kornberg, H. L.: Regulation of sugar utilization by Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 158, 491–493 (1968)

    Google Scholar 

  • Romano, A. H., Kornberg, H. L.: Regulation of sugar uptake by Aspergillus nidulans. Proc. roy. Soc. B 173, 475–490 (1969)

    Google Scholar 

  • Scazzocchio, C.: The genetic control of molybdoflavoproteins in Aspergillus nidulans: Allopurinol-resistant mutants constitutive for xanthine dehydrogenase. Appendix: The induction of xanthine dehydrogenase II. Europ. J. Biochem. 36, 439–445 (1973a)

    Google Scholar 

  • Scazzocchio, C.: The genetic control of molybdoflavoproteins in Aspergillus nidulans. II.: Use of the NADH dehydrogenase activity associated with xanthine dehydrogenase to investigate substrate and product induction. Molec. gen. Genet. 125, 147–155 (1973b)

    Google Scholar 

  • Scazzocchio, C., Darlington, A. J.: The genetic control of xanthine dehydrogenase and urate oxidase synthesis in Aspergillus nidulans. Bull. Soc. Chim. biol. (Paris) 49, 1503–1508 (1967)

    Google Scholar 

  • Scazzocchio, C., Darlington, A. J.: The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 166, 557–568 (1968)

    Google Scholar 

  • Scazzocchio, C., Holl, F. B., Foguelman, A. I.: The genetic control of molybdoflavoproteins in Aspergillus nidulans: Allopurinol-resistant mutants constitutive for xanthine dehydrogenase. Europ. J. Biochem. 36, 428–445 (1973)

    Google Scholar 

  • Schwencke, J., Magaña-Schwencke, N.: Derepression of a proline transport system in Saccharomyces chevalieri by nitrogen starvation. Biochim. biophys. Acta (Amst.) 173, 302–312 (1969)

    Google Scholar 

  • Shavlovsky, G. M., Sibirny, A. A.: Regulation of uric acid uptake in the yeast Pichia guilliermondii. Fed. Eur. Biochem. Soc. Lett. 31, 313–316 (1973)

    Google Scholar 

  • Weglenski, P.: The mechanism of action of proline suppressors in Aspergillus nidulans. J. gen. Microbiol. 47, 77–85 (1967)

    Google Scholar 

  • Wiame, J. M.: The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanisms. Current Topics in Cellular Regulation 4, 1–38 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arst, H.N., Cove, D.J. Nitrogen metabolite repression in Aspergillus nidulans . Molec. gen. Genet. 126, 111–141 (1973). https://doi.org/10.1007/BF00330988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330988

Keywords

Navigation