Skip to main content

Transport of Phosphorus and Carbon in VA Mycorrhizas

  • Chapter
Mycorrhiza

Abstract

The evolutionary success of VA mycorrhizas reflects the unique combination of a superior biotrophic mode of fungal carbon acquisition and the ability of the living plant to absorb nutrients, especially phosphorus, from the fungus. Improved plant growth in response to mycorrhization is closely linked to this bidirectional exchange of C and P between the symbionts, an exchange which is strongly influenced by plant and fungal genotypes and by the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1984) The effect of VA mycorrhizae on plant growth. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Boca Raton, Florida, pp 113–130

    Google Scholar 

  • Abbott LK, Robson AD (1985) Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 99: 245–255

    Article  Google Scholar 

  • Abbott LK, Robson AD (1991a) Factors influencing the occurrence of vesiculararbuscular mycorrhizas. Agric Ecosyst Environ 35: 121–150

    Article  Google Scholar 

  • Abbott LK, Robson AD (1991b) Field management of VA mycorrhizal fungi. In: Keister DL, Gregan PB (eds) The rhizosphere and plant growth, Kluwer Academic Publishers, Dordrecht, pp 355–362

    Chapter  Google Scholar 

  • Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 1–21

    Google Scholar 

  • Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145: 107–113

    Article  Google Scholar 

  • Aked J, Hall JL (1993) The uptake of glucose, fructose and sucrose into pea powdery mildew (Erysiphe pisi DC) from the apoplast of pea leaves. New Phytol 123: 277–282

    Article  CAS  Google Scholar 

  • Al-Nahidh S, Sanders FE (1987) Comparisons between vesicular-arbuscular mycorrhizal fungi with respect to the development of infection and consequent effects on plant growth. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 239–252

    Google Scholar 

  • Amijee F, Stribley DP (1987) Soluble carbohydrates of vesicular-arbuscular mycorrhizal fungi. Mycologist 21: 20–21

    Article  Google Scholar 

  • Amijee F, Stribley DP, Tinker PB (1993) The development of endomycorrhizal root systems. VIII. Effects of soil phosphorus and fungal colonization on the concentration of soluble carbohydrates in roots. New Phytol 123: 297–306

    Google Scholar 

  • Antunes V, Cardoso EJBN (1991) Growth and nutrient status of citrus plants as influenced by mycorrhiza and phosphorus application. Plant Soil 131: 11–19

    CAS  Google Scholar 

  • Baas R, Lambers H (1988) Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to the internal phosphate concentration. Physiol Plant 74: 701–707

    Article  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability. John Wiley, New York, 398 pp

    Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55: 2320–2325

    PubMed  Google Scholar 

  • Bécard G, Doner LW, Rolin DB, Douds DD, Pfeffer PE (1991) Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo 1 C NMR and HPLC analyses. New Phytol 118: 547–552

    Article  Google Scholar 

  • Beever RE, Burns DJW (1980) Phosphorus uptake, storage and utilization by fungi. In: Woolhouse HW (ed) Advances in botanical research, vol 8. Academic Press, London, pp 127–192

    Google Scholar 

  • Beilby JP (1980) Fatty acid and sterol composition of ungerminated spores of the vesicular-arbuscular mycorrhizal fungus, Acaulospora laevis. Lipids 15: 949–952

    Article  CAS  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius: changes in neutral and polar lipids. J Lipid Res 21: 739–750

    PubMed  CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33: 159–173

    Article  Google Scholar 

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto-and endomycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 149–174

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134: 189–207

    Article  CAS  Google Scholar 

  • Buwalda JG, Goh KM (1982) Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol Biochem 14: 103–106

    Article  CAS  Google Scholar 

  • Cairney JWG, Smith SE (1992) Influence of intracellular phosphorus concentration on phosphate absorption by the ectomycorrhizal basidiomycete Pisolithus tinctori us. Mycol Res 96: 673–676

    Article  CAS  Google Scholar 

  • Casselton PJ (1976) Anaplerotic pathways. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 2. Biosynthesis and metabolism. Edward Arnold, London, pp 121–136

    Google Scholar 

  • Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesiculararbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.) Biol Fertil Soils 15: 253–258

    Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36: 77–115

    Article  CAS  Google Scholar 

  • Cooper KM (1975) Growth responses to the formation of endotrophic mycorrhizas in Solanum, Leptospermum, and New Zealand ferns. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 391–407

    Google Scholar 

  • Cooper KM (1984) Physiology of VA mycorrhizal associations. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Fl, pp 155–186

    Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas. New Phytol 81: 43–52

    Article  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88: 327–339

    Google Scholar 

  • Cox G, Tinker PB (1976) Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas. New Phytol 77: 371–378

    Article  CAS  Google Scholar 

  • Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-endophyte transfer in a vesicular-arbusclar mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 297–306

    Google Scholar 

  • Cress WA, Throneberry GO, Lindsey DL (1979) Kinetics of phosphorus absorption by mycorrhizal and nonmycorrhizal tomato roots. Plant Physiol 64: 484–487

    Article  PubMed  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. In: Thomas GW, Sabey BR, Vaadia Y, Van Vleck LD (eds) Advanced series in agricultural sciences, vol 15. Springer, Berlin Heidelberg New York, 288 pp

    Google Scholar 

  • Dehne HW (1986) Influence of VA mycorrhizae on host plant physiology. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 431–435

    Google Scholar 

  • Dighton J, Poskitt JM, Brown TK (1993) Phosphate influx into ectomycorrhizal and saprotrophic fungal hyphae in relation to phosphate supply; a potential method for selection of efficient mycorrhizal species. Mycol Res 97: 355–358

    Article  Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144: 199–205

    Article  CAS  Google Scholar 

  • Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 107: 163–172

    Article  CAS  Google Scholar 

  • Dosskey MG, Linderman RG, Boersma L (1990) Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. New Phytol 115: 269–274

    Article  CAS  Google Scholar 

  • Dosskey MG, Boersma L, Linderman RG (1991) Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol 117: 327–334

    Article  Google Scholar 

  • Douds DD Jr, Johnson CR, Koch KE (1988) Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol 86: 491–496

    Article  PubMed  CAS  Google Scholar 

  • Drew MC, Saker LR (1978) Nutrient supply and the growth of the seminal root system in barley. III. Compensatory increases in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J Exp Bot 29: 435–451

    Google Scholar 

  • Dunne MJ, Fitter AH (1989) The phosphorus budget of a field-grown strawberry (Fragaria xananassa cv. Hapil) crop: evidence for a mycorrhizal contribution. Ann Appl Biol 114: 185–193

    Article  Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot 71: 1–10

    Article  CAS  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69: 87–94

    Article  Google Scholar 

  • Farrar JF, Lewis DH (1987) Nutrient relations in biotrophic infections. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 104–113

    Google Scholar 

  • Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99: 257–265

    Article  Google Scholar 

  • Fitter AH (1990) The role and ecological significance of vesicular-arbuscular mycor-rhizas in temperate ecosystems. Agric Ecosyst Environ 29: 137–151

    Article  Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia 47: 350–355

    Article  Google Scholar 

  • Fitter AH, Merryweather JW (1992) Why are some plants more mycorrhizal than others? An ecological enquiry. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 26–36

    Google Scholar 

  • Fredeen AL, Terry N (1988) Influence of vesicular-arbuscular mycorrhizal infection and soil phosphorus level on growth and carbon metabolism of soybean. Can J Bot 66: 2311–2316

    Google Scholar 

  • Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Schüepp H (1993) Acquisition of nitrogen by the external hyphae of vesiculararbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 122: 447–454

    Article  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83: 409–418

    Article  Google Scholar 

  • George E, Häussler K-U, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70: 2130–2137

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1978) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. II. Soluble alkaline prosphatase specific to mycorrhizal infection in onion roots. Physiol Plant Pathol 12: 45–53

    Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1986) The physiology of improved phosphate nutrition in mycorrhizal plants. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 101–109

    Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1989) Phosphorus metabolism in mycorrhizas. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 227–241

    Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytol 117: 61–74

    Article  CAS  Google Scholar 

  • Gilmore AE (1971) The influence of endotrophic mycorrhizae on the growth of peach seedlings. J Am Soc Hortic Sci 96: 35–38

    Google Scholar 

  • Graham JH, Syvertsen JP (1985) Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol 101: 667–676

    Article  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68: 548–552

    Article  PubMed  CAS  Google Scholar 

  • Graham JH, Linderman RG, Menge JA (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of troyer citrange. New Phytol 91: 183–189

    Article  Google Scholar 

  • Graham JH, Hodge NC, Morton JB, Eissenstat DM (1992) Fatty acid analysis for quantification of fungal colonization and cost and characterization of biochemical variation of arbuscular and vesicular-arbuscular mycorrhizal fungi. In: Jasper D, Thomson B (eds) The international symposium on management of mycorrhizas in agriculture, horticulture and forestry. The University of Western Australia, Nedlands, pp 42–43

    Google Scholar 

  • Hall IR, Scott RS, Johnstone PD (1977) Effect of vesicular-arbuscular mycorrhizas on response of “Grasslands Huia” and “Tamar” white clovers to phosphorus. NZ J Agric Res 20: 549–555

    Article  Google Scholar 

  • Hamel C, Fyles H, Smith DL (1990) Measurement of development of endomycorrhizal mycelium using three different vital stains. New Phytol 115: 297–302

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London, 483 pp

    Google Scholar 

  • Harris D, Paul EA (1987) Carbon requirements of vesicular-arbuscular mycorrhizae. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Boca Raton, pp 93–105

    Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-RhizobiumGlomus associations. New Phytol 101: 427–440

    Article  CAS  Google Scholar 

  • Hattingh MJ, Gray LE, Gerdemann JW (1973) Uptake and translocation of 32P-labelled phosphate to onion roots by endomycorrhizal fungi. Soil Sci 116: 383387

    Google Scholar 

  • Hepper CM (1977) A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots. Soil Biol Biochem 9: 15–18

    Article  Google Scholar 

  • Herold A (1980) Regulation of photosynthesis by sink activity — the missing link. New Phytol 86: 131–144

    Article  CAS  Google Scholar 

  • Hetrick BAD (1989) Acquisition of phosphorus by VA mycorrhizal fungi and the growth responses of their host plants. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 205–226

    Google Scholar 

  • Ho I, Trappe JM (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature 224: 30–31

    Google Scholar 

  • Jakobsen I (1991) Carbon metabolism in mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 23. Academic Press, London, pp 149–180

    Google Scholar 

  • Jakobsen I (1992) Phosphorus transport by external hyphae of vesicular-arbuscular mycorrhizas. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 48–58

    Google Scholar 

  • Jakobsen I (1994) Research approaches to study the functioning of vesiculararbuscular mycorrhizas in the field. In: Robson AD, Abbott LK, Malajczuk N (eds) Proc Int Symp on Management of mycorrhizas in agriculture, horticulture and forestry. Perth, Western Australia. Plant Soil, Special Issue 159: 141–147

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115: 77–83

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120: 371–380

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol 120: 509–516

    Article  CAS  Google Scholar 

  • Jasper DA, Robson AD, Abbott LK (1979) Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biol Biochem 11: 501–505

    Article  CAS  Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BAD (1992) Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 24: 897–903

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 415–471

    Google Scholar 

  • Jennings DH (1987) Translocations of solutes in fungi. Biol Rev 62: 215–243

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122: 281–288

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 32P and 15N. New Phytol 124: 61–68

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1991) Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol 119: 99–106

    Article  CAS  Google Scholar 

  • Kiernan JM, Hendrix JW, Maronek DM (1983) Fertilizer-induced pathogenity of mycorrhizal fungi to sweetgum seedlings. Soil Biol Biochem 15: 257–262

    Article  Google Scholar 

  • Koch KE, Johnson CR (1984) Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiol 75: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Koide R (1985) The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytol 99: 449–462

    Article  Google Scholar 

  • Koide RT (1991) Tansley review No 29. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117: 365–386

    Article  CAS  Google Scholar 

  • Koide R, Elliott G (1989) Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Func Ecol 3: 252–255

    Google Scholar 

  • Komor E (1982) Transport of sugar. In: Loewus FA, Tanner W (eds) Plant carbohydrates I. Encyclopedia of plant physiology 13A. Springer, Berlin Heidelberg New York, pp 635–676

    Chapter  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116: 637645

    Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131: 177–185

    Article  CAS  Google Scholar 

  • Kucey RMN, Paul EA (1982) Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14: 407–412

    Article  Google Scholar 

  • Lewis DH (1986) Inter-relationships between carbon nutrition and morphogenesis in mycorrhizas. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 101–109

    Google Scholar 

  • Li X-L, George E, Marschner H (1991a) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136: 41–48

    Article  Google Scholar 

  • Li X-L, George E, Marschner H (1991b) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119: 397–404

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant and Soil 129: 1–10

    Article  CAS  Google Scholar 

  • MacDonald RM, Lewis M (1978) The occurrence of some acid phosphatases and dehydrogenases in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 80: 135–141

    Article  CAS  Google Scholar 

  • Mäder P, Vierheilig H, Alt M, Wiemken A (1993) Boundaries between soil compartments formed by microporous hydrophobic membranes (GORE-TEXR) can be crossed by vesicular-arbuscular mycorrhizal fungi but not by ions in the soil solution. Plant Soil 152: 201–206

    Article  Google Scholar 

  • Manners JM (1989) The host-haustorium interface in powdery mildews. Aust J Plant Physiol 16: 45–52

    Article  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London, 674 pp

    Google Scholar 

  • Menge JA, Tinker PB, Stribley D, Snellgrove R (1985) Inoculum potential. Its role in early infection and mycorrhizal efficiency. In: Molina R (ed) Proc 6th North American Conf on Mycorrhizae. Forest Research Laboratory, Corvallis, 394 pp

    Google Scholar 

  • Mosse B (1972) The influence of soil type and Endogone strain on the growth of mycorrhizal plants in phosphate deficient soils. Rev Ecol Biol Sol 9: 529–537

    CAS  Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular-arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72: 127–136

    Google Scholar 

  • Nemec S, Vu JCV (1990) Effects of soil phosphorus and Glomus intraradices on growth, nonstructural carbohydrates, and photosynthetic activity of Citrus aurantium. Plant Soil 128: 257–263

    Article  CAS  Google Scholar 

  • Nordby HE, Nemec S, Nagy S (1981) Fatty acids and sterols associated with citrus root mycorrhizae. J Agric Food Chem 29: 396–401

    Article  CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Blackwell, Oxford, 342 pp

    Google Scholar 

  • Nylund J-E, Wallander H (1989) Effects of ectomycorrhiza on host growth and carbon balance in a semi-hydroponic cultivation system. New Phytol 112: 389398

    Google Scholar 

  • O’Keefe DM, Sylvia DM (1992) Chronology and mechanisms of P uptake by mycorrhizal sweet potato plants. New Phytol 122: 651–659

    Google Scholar 

  • Olsen R, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with NaHCO3. Circ 939, United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Pacovsky RS (1988) Influence of inoculation with Azospirillum brasilense and Glomus fasciculatum on sorghum nutrition. Plant Soil 110: 283–287

    Article  CAS  Google Scholar 

  • Pacovsky RS (1989) Metabolic differences in Zea-Glomus-Azospirillum symbioses. Soil Biol Biochem 21: 953–960

    Article  CAS  Google Scholar 

  • Pacovsky RS, Fuller G (1988) Mineral and lipid composition of Glycine-GlomusBradyrhizobium symbioses. Physiol Plant 72: 733–746

    Article  CAS  Google Scholar 

  • Pang PC, Paul EA (1980) Effects of vesicular-arbuscular mycorrhiza on 14C and 15N distribution in nodulated faba beans. Can J Soil Sci 60: 241–250

    Article  CAS  Google Scholar 

  • Patrick JW (1989) Solute efflux from the host at plant-microorganism interfaces. Aust J Plant Physiol 16: 53–67

    Article  CAS  Google Scholar 

  • Paul ND (1989) Effects of fungal pathogens on nitrogen, phosphorus and sulphur relations of individual plants and populations. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 155–180

    Google Scholar 

  • Pearson JN, Jakobsen I (1993a) Symbiotic exchange of carbon and phosphorus between cucumber and three vesicular-arbuscular mycorrhizal fungi. New Phytol 124: 481–488

    Article  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993b) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 2P and 3P. New Phytol 124: 489–494

    Article  CAS  Google Scholar 

  • Pearson JN, Schweiger P (1993) Scutellospora calospora associated with subterranean clover: dynamics of colonization, sporulation and soluble carbohydrates. New Phytol 124: 215–219

    Google Scholar 

  • Pearson V, Tinker PB (1975) Measurement of phosphorus fluxes in the external hyphae of endomycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 277–287

    Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply: analysis of carbon costs. Plant Physiol 101: 1063–1071

    PubMed  CAS  Google Scholar 

  • Rhodes LEI, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and nonmycorrhizal onions. New Phytol 75: 555–561

    Article  Google Scholar 

  • Robbins S, Pharr DM (1988) Effect of restricted root growth on carbohydrate metabolism and whole plant growth of Cucumis sativus L. Plant Physiol 87: 409413

    Google Scholar 

  • Rousseau JVD, Reid CPP (1990) Effects of phosphorus and ectomycorrhizas on the carbon balance of loblolly pine seedlings. For Sci 36: 101–112

    Google Scholar 

  • Rousseau JVD, Reid CPP (1991) Effects of phosphorus fertilization and mycorrhizal development on phosphorus nutrition and carbon balance of loblolly pine. New Phytol 117: 319–326

    Article  CAS  Google Scholar 

  • Same BI, Robson AD, Abbott LK (1983) Phosphorus, soluble carbohydrates and endomycorrhizal infection. Soil Biol Biochem 15: 593–597

    Article  CAS  Google Scholar 

  • Sanders FE, Tinker PB (1971) Mechanisms of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233: 278–279

    Article  PubMed  CAS  Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pestic Sci 4: 385–395

    Article  CAS  Google Scholar 

  • Sanders FE, Tinker PB, Black LB, Palmerley SM (1977) The development of endomycorrhizal root systems. I. Spread of infection and growth-promoting effects with four species of vesicular-arbuscular endophyte. New Phytol 78: 257268

    Google Scholar 

  • Schubert A, Marzachí C, Mazzitelli M, Cravero MC, Bonfante-Fasolo P (1987) Development of total and viable extraradical mycelium in the vesiculararbuscular mycorrhizal fungus Glomus clarum Nicol. Schenck. New Phytol 107: 183–190

    Google Scholar 

  • Schubert A, Wyss P, Wiemken A (1992) Occurrence of trehalose in vesiculararbuscular mycorrhizal fungi and in mycorrhizal roots. J Plant Physiol 140: 41–45

    Article  CAS  Google Scholar 

  • Schüepp H, Miller DD, Bodmer M (1987) A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Trans Br Mycol Soc 89: 429–435

    Article  Google Scholar 

  • Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 117: 387–398

    Article  CAS  Google Scholar 

  • Sheard J, Farrar JF (1987) Transport of sugar in Phytophthora palmivora ( Butl.) Butl. New Phytol 105: 265–272

    Google Scholar 

  • Sivak MN, Walker DA (1986) Photosynthesis in vivo can be limited by phosphate supply. New Phytol 102: 499–512

    Article  CAS  Google Scholar 

  • Smith SE, Dickson S (1991) Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Aust J Plant Physiol 18: 637–648

    Article  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39: 221–244

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17: 177–188

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (1989) Membrane transport at the biotrophic interface: an overview. Aust J Plant Physiol 16: 33–43

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114: 1–38

    Article  CAS  Google Scholar 

  • Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146: 169–179

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. In: Robson AD, Abbott LK, Malajczuk N (eds) Proc Int Symp on Management of mycorrhizas in agriculture, horticulture and forestry. Perth, Western Australia. Plant Soil, Special Issue 159: 103–114

    Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesiculararbuscular mycorrhizas. New Phytol 92: 75–87

    Article  Google Scholar 

  • Snellgrove RC, Stribley DP, Hepper CM (1987) Host-endophyte relationships. Invertase in roots. Rothamsted Exp Stn Rep 1986 (1): 142

    Google Scholar 

  • Son CL, Smith SE (1988) Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytol 108: 305–314

    Article  Google Scholar 

  • Sylvia DM (1988) Activity of external hyphae of vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 20: 39–43

    Article  Google Scholar 

  • Sylvia DM, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stress. ASA Spec Publ 54: 101–124

    Google Scholar 

  • Syvertsen JP, Graham JH (1990) Influence of vesicular arbuscular mycorrhizae and leaf age on net gas exchange of Citrus leaves. Plant Physiol 94: 1424–1428

    Article  PubMed  CAS  Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5: 308–312

    Article  CAS  Google Scholar 

  • Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3: 199–204

    Article  CAS  Google Scholar 

  • Tester M, Smith FA, Smith SE (1992) The role of ion channels in controlling solute exchange in mycorrhizal associations. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 348–351

    Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1985) Sulfur supply and the formation of vesicular-arbuscular mycorrhizas by Glomus fasciculatum on subterranean clover. Soil Biol Biochem 17: 877–879

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103: 751–765

    Article  Google Scholar 

  • Thomson BD, Clarkson DT, Brain P (1990a) Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 116: 647–653

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1990b) Mycorrhizas formed by Gigaspora calospora and Glomus fasciculatum on subterranean clover in relation to soluble carbohydrate concentrations in roots. New Pytol 114: 217–225

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1991) Soil mediated effects of phosphorus supply on the formation of mycorrhizas by Scutellispora calospora (Nicol. Gerd.) Walker Sanders on subterranean clover. New Phytol 118: 463–469

    Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97: 245–250

    Article  CAS  Google Scholar 

  • Tunlid A, White DC (1990) Use of lipid biomarkers in environmental samples. In: Fox A, Morgan SL, Larsson L, Odham G (eds) Analytical microbiology methods. Plenum, New York, pp 259–274

    Google Scholar 

  • Whipps JM (1987) Carbon loss from the roots of tomato and pea seedlings grown in soil. Plant Soil 103: 95–100

    Article  CAS  Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. John Wiley, West Sussex, pp 59–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsen, I. (1995). Transport of Phosphorus and Carbon in VA Mycorrhizas. In: Varma, A., Hock, B. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08897-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08897-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08899-9

  • Online ISBN: 978-3-662-08897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics