Skip to main content

Osmoregulated Solute Transport in Halophilic Bacteria

  • Chapter
Halophilic Microorganisms

Abstract

Halophilic organisms living in saline environments like salt lakes, coastal lagoons or man-made salterns are challenged by two stress factors, the high inorganic ion concentration and the low water potential. Prokaryotes have developed two principal mechanisms to cope with these stress factors and counteract the outflow of cytoplasmic water, namely, the “salt-in-cytoplasm” mechanism and the organic-osmolyte mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brown A.D. (1976) Microbial water stress. Bacteriol Rev 40: 803 - 846

    PubMed  CAS  Google Scholar 

  • Canovas D, Vargas C, Csonka L.N., Ventosa A, Nieto J.J. (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 178: 7221 - 7226

    PubMed  CAS  Google Scholar 

  • Dennis P.P., Shimmin L.C. (1997) Evolutionary divergence and salinity-mediated selection in halophilic Archaea. Microbiol Mol Biol Rev 61: 90 - 104

    PubMed  CAS  Google Scholar 

  • Dinnbier U, Limpinsel E, Schmid R, Bakker E.P. (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150: 348 - 357

    Article  PubMed  CAS  Google Scholar 

  • Driessen A.J.M., Rosen B.P., Konings W.N. (2000) Diversity of transport mechanisms: common structural principles. TIBS 25: 397 - 401

    PubMed  CAS  Google Scholar 

  • Forward J.A., Behrendt M.C., Wyborn N.R., Cross R, Kelly D.J. (1997) TRAP transporter: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol 179: 5482 - 5493

    PubMed  CAS  Google Scholar 

  • Galinski E.A. (1995) Osmoadaptation in Bacteria. Adv Microb Physiol 37: 273 - 328

    Article  CAS  Google Scholar 

  • Grammann K, Volke A, Kunte H.J. (2002) New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: TRAP transporter TeaABC mediates the uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol 184: 3078 - 3085

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M, Richter S, Mikkat S (1997) The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. J Bacteriol 179: 714 - 720

    PubMed  CAS  Google Scholar 

  • Jacobs M.H.J., Heide T, Driessen A.J.M., Konings W.N. (1996) Glutamate transport in Rhodobacter sphaeroides is mediated by a novel binding protein-dependent secondary transport system. Proc Natl Acad Sci USA 93: 12786 - 12790

    Article  PubMed  CAS  Google Scholar 

  • Jebbar M, Talibart R, Gloux K, Bernard T, Blanco C (1992) Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J Bacteriol 174: 5027 - 5035

    PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170: 319 - 330

    Article  PubMed  CAS  Google Scholar 

  • Kunte H.J., Galinski E.A. (1995) Transposon mutagenesis in halophilic eubacteria: conjugal transfer and insertion of transposon Tn5 and Tn1732 in Halomonas elongata. FEMS Microbiol Lett 128: 293 - 299

    Article  PubMed  CAS  Google Scholar 

  • Kunte H.J., Crane R.A., Culham D.E., Richmond D, Wood J.M. (1999) Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J Bacteriol 181: 1537 - 1543

    PubMed  CAS  Google Scholar 

  • Kunte H.J., Galinski E.A., Grammann K, Volke A, Bestvater T (200 1) Verfahren zur Gewinnung von Wertstoffen aus Organismen durch Beeinflussung/Beeinträchtigung der zelleigenen Transportsysteme für diese Wertstoffe bzw. durch Verwendung von Produktionsstämmen, denen besagte Transportsysteme fehlen. German Patent Application DE 101 14 189. 0

    Google Scholar 

  • Lai M.-C., Yang D.-R., Chuang M.-J. (1999) Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl Environ Microbiol 65: 828 - 833

    PubMed  CAS  Google Scholar 

  • Lanyi J.K. (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38: 272 - 290

    PubMed  CAS  Google Scholar 

  • Mackay M.A., Norton R.S., Borowitzka L.J. (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130: 2177 - 2191

    CAS  Google Scholar 

  • Mellies J, Brems R, Villarejo M (1994) The Escherichia coli proU promotor element and its contribution to osmotically signalled transcription activation. J Bacteriol 176: 3638 - 3645

    PubMed  CAS  Google Scholar 

  • Nyström T, Neidhardt F.C. (1996) Effects of overproducing the Universal Stress Protein UspA, in Echerichia coli K-12. J Bacteriol 178: 927 - 930

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63: 334 - 348

    PubMed  CAS  Google Scholar 

  • Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6: 217 - 223

    Article  PubMed  CAS  Google Scholar 

  • Peter H, Weil B, Burkovski A, Krämer R, Morbach S (1998) Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J Bacteriol 180: 6005-6012

    Google Scholar 

  • Rabus R, Jack D.L., Kelly D.J., Saier M.H. (1999) TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary transporters. Microbiology 145: 3431 - 3445

    PubMed  CAS  Google Scholar 

  • Racher K.I., Voegele R.T., Marshall E.V., Culham D.E., Wood J.M., Jung H, Bacon M, Cairns M.T., Ferguson S.M., Liang W.-J., Henderson P.J.F., White G, Hallett F.R. (1999) Purification and reconstitution of an osmosensor: transporter ProP of Escherichia coli senses and responds to osmotic shifts. Biochemistry 38: 1676 - 1648

    Article  PubMed  CAS  Google Scholar 

  • Rengpipat S, Lowe S.E., Zeikus J.G. (1988) Effect of extreme salt concentration on the physiology and biochemistry of Halobacteroides acetoethylicus. J Bacteriol 170: 3065 - 3071

    PubMed  CAS  Google Scholar 

  • Robert H, Le Marrec C, Blanco C, Jebbar M (2000) Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth to Tetragenococcus halophila.Appl Environ Microbiol 66: 509 - 51

    CAS  Google Scholar 

  • Rübenhagen R, Rönsch H, Jung H, Krämer R, Morbach S (2000) Osmosensor and osmoregulator properties of the betaine carrier BetP from the Corynebacterium glutamicum in proteoliposomes. J Biol Chem 275: 735 - 741

    Article  PubMed  Google Scholar 

  • Saier M.H. (1994) Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58: 71 - 93

    PubMed  CAS  Google Scholar 

  • Severin J, Wohlfarth A, Galinski E.A. (1992) The predominant role of the recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138: 1629 - 1638

    Article  CAS  Google Scholar 

  • Tetsch L, Kunte H.J. (2002) The substrate-binding protein TeaA of the osmoregulated ectoine transporter TeaABC from Halomonas elongata: purification and characterization of recombinant TeaA. FEMS Microbiol Lett 211: 213 - 218

    Article  PubMed  CAS  Google Scholar 

  • Touzé T, Gouesbet G, Boiangiu C, Jebbar M, Bonnassie S, Blanco C (2001) Glycine betaine loses its osmoprotective activity in a bspA strain of Erwinia chrysanthemi. Mol Microbiol 42: 87 - 99

    Article  PubMed  Google Scholar 

  • Heide T, Stuart MCA, Poolman B (2001) On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J 20: 7022 - 7703

    Article  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 62: 504 - 544

    Google Scholar 

  • Vreeland RJ, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30: 485 - 495

    Google Scholar 

  • Wyborn NR, Alderson J, Andrews SC, Kelly DJ (2001) Topological analysis of DctQ, the small integral membrane protein of the C4-dicarboxylate TRAP transporter of Rhodobacter capsulatus. FEMS Microbiol Lett 194: 13 - 17

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kunte, H.J. (2004). Osmoregulated Solute Transport in Halophilic Bacteria. In: Ventosa, A. (eds) Halophilic Microorganisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07656-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07656-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05664-2

  • Online ISBN: 978-3-662-07656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics