Skip to main content

Photoreceptors for the Circadian Clock of the Fruitfly

  • Chapter
Biological Rhythms

Abstract

Light profoundly affects the circadian system of organisms. This chapter reviews the photoreceptors receiving the light and transducing it to the pacemakers controlling the eclosion and locomotor activity rhythms of Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.A. (1984) Photoreception and vision in invertebrates. NATO ASI series A: Life Sciences Vol. 92. ISBN 0–306–41626–3.

    Google Scholar 

  • Belvin, M.P., Zhou, H., Yin, J.C.P. (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22: 777–787.

    Article  PubMed  CAS  Google Scholar 

  • Blaschke, I. Lang, P., Hofbauer, A., Engelmann, W., Helfrich-Förster, C. (1996) Preliminary action spectra suggest that the clock cells of Drosophila are synchronized to the external LD-cycle by the compound eyes plus extraretinal photoreceptors. In: Elsner, N., Schnitzler, H-U. (eds.) Brain and Evolution. Proceedings of the 24th Göttingen Neurobiology Conference, Volume I. p: 30.

    Google Scholar 

  • Cashmore, A.R., Jarillo, J.A., Wu, Y-J., Liu, D. (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284: 760–765.

    Article  PubMed  CAS  Google Scholar 

  • Ceriani, M.F., Darlington, T.K., Staknis, D., Mas, P., Petti, A.A., Weitz, C.J., Kay, S.A. (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285: 553–568.

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekaran, M.K., Engelmann, W. (1973) Early and late subjective night phases of the Drosophila pseudoobscura circadian rhythm require different energies of blue light for phase shifting. Z. Naturforsch. 28c: 750–753.

    Google Scholar 

  • Chandrashekaran, M.K., Loher, W. (1969) The effect of light intensity on the circadian rhythms of eclosion in Drosophila pseudoobscura. Z. Verg. Physiol. 62: 337–347.

    Article  Google Scholar 

  • Chen, Y., Hunter-Ensor, M., Schotland, P., Seghal, A. (1998) Alterations of per RNA in non-coding regions affect periodicity of circadian behavioral rhythms J. Biol. Rhythms. 13: 364–379.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y., Hardin, P.E. (1998) Drosophila photoreceptors contain an autonomous circadian pacemaker that can function without period mRNA cycling. J. Neurosci. 18: 741–750.

    PubMed  CAS  Google Scholar 

  • Darlington, T.K., Wagner-Smith, K., Ceriani, M.F., Staknis, D., Gekakis, N., Steeves, T.D.L., Weitz, C.J., Takahashi, J.S., Kay, S.A. (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280: 1599–1603.

    Article  PubMed  CAS  Google Scholar 

  • Dembinska, M.E., Stanewsky, R., Hall, J.C., Rosbash, M. (1997) Circadian cycling of a PERIOD-beta-galactosidase fusion protein in Drosophila: evidence for cyclical degradation. J. Biol. Rhythms 12: 157–172.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, (1999) Molecular bases for circadian clocks. Cell 96: 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Dushay, M.S., Rosbash, M., Hall, J.C. (1989) The disconnected visual system mutations in Drosophila drastically disrupt circadian rhythms. J. Biol. Rhythms 4: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Edery, I. (1999) Role of postransciptional regulation in circadian clocks: lessons from Drosophila. Chronobiol. Internat. 16: 377–414.

    Article  CAS  Google Scholar 

  • Egan, E.S., Franklin, T.M., Hilderbrand-Chae, M.J., McNeil, G.P., Roberts, M.A. Schroeder, A.J., Zhang, X., Jackson, F.R. (1999) An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants. J. Neurosci. 19 (10): 3665–3673.

    PubMed  CAS  Google Scholar 

  • Emery, I.F., Noverai, J.M., Jamison, C.F., Siwicky, K.K. (1997) Rhythms of Drosophila period gene expression in culture. Proc. Natl. Acad. Sci. USA 94: 4092–4096.

    Article  PubMed  CAS  Google Scholar 

  • Emery, P. So, W.V., Kaneko, M., Hall, J.C., Rosbash, M. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5): 669–679.

    Article  PubMed  CAS  Google Scholar 

  • Emery, P. Stanewsky, R., Hall, J.C. and Rosbash, M. (2000a) A unique circadian-rhythm photoreceptor. Nature 404: 456–457.

    Article  CAS  Google Scholar 

  • Emery, P., Stanewsky, R., Helfrich-Förster, C., Emery-Le, M., Hall, J.C. and Rosbash, M. (2000b) Drosophila CRY confers circadian light-sensitivity to behavioral pacemaker neurons. Neuron 26: 493–504.

    Article  CAS  Google Scholar 

  • Engelmann, W., Honegger, H.W. (1966) Tagesperiodische Schlüpfrhythmik einer augenlosen Drosophila melanogaster Mutante. Naturwissenschaften 53: 588.

    Article  PubMed  CAS  Google Scholar 

  • Frank, K.D., Zimmermann, W.F. (1969) Action spectra for phase shifts of a circadian rhythm in Drosophila. Science 163: 688–689.

    Article  PubMed  CAS  Google Scholar 

  • Glossop, N.R.J., Lyons, L.C., Hardin, P.E. (1999) Interlocked feedback loops within the Drosophila circadian oscillator. Science 286: 766–768.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.C. (1998a) Molecular neurogenetics of biological rhythms. J. Neurogenet. 12: 115–181.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.C. (1998b) Genetics of biological rhythms in Drosophila. Adv. Genet. 38: 135–184.

    Article  PubMed  CAS  Google Scholar 

  • Hao, H. Allen, D.L., Hardin, P.E. (1997) A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol. Cell. Biol. 17: 3687–3693.

    PubMed  CAS  Google Scholar 

  • Hege, D.M., Stanewsky, S., Hall, J.C., Giebultowicz, J.M. (1997) Rhythmic expression of a PER-reporter in the malphighian tubules of decapitated Drosophila: evidence for a brain-independent circadian clock. J. Biol. Rhythms 12: 300–308.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich, C., Engelmann, W. (1983) Circadian rhythms of the locomotor activity rhythm in Drosophila melanogaster and its mutant `sine oculis’ and `small optic lobes’. Physiol. Entomol. 8: 257–272.

    Article  Google Scholar 

  • Helfrich-Förster, C. (1996) Drosophila rhythms: From brain to behaviour. Semin. Cell Dev. Biol. 7: 791–802.

    Article  Google Scholar 

  • Helfrich-Förster, C. (1997) Photic entrainment of Drosophila activity rhythm occurs via retinal and extraretinal pathways. ESC-Workshop “Photic and Non-Photic Entrainment of Biological Rhythms”. Biol. Rhythm Res. 28S: 119.

    Google Scholar 

  • Helfrich-Förster, C. (1998) Robust circadian rhythmicity of Drosophila melanogaster requires the presence of Lateral Neurons: A brain-behavioral study of disconnected mutants, J. Comp. Physiol. A 182: 435–453.

    Article  PubMed  Google Scholar 

  • Helfrich-Förster, C., Stengl, M., Homberg, U. (1998) Organization of the circadian system in insects. Chronobiol. Internat. 15 (6): 567–594.

    Article  Google Scholar 

  • Helfrich-Förster, C., Winter, C., Hofbauer, A., Hall, J. C., Stanewsky, R. (2001) This circadian clock of fruit is blind after elimination of all known photoreceptors. Neuron 30: 249–261.

    Article  PubMed  Google Scholar 

  • Hofbauer, A., Buchner, E. (1989) Does Drosophila have seven eyes? Naturwissenschaften 76: 335–336.

    Article  Google Scholar 

  • Honegger, (1967) Zur Analyse der Wirkung von Lichtpulsen auf das Schlüpfen von Drosophila pseudoobscura. Z. Vergl. Physiol. 57: 244–262.

    Article  Google Scholar 

  • Hunter-Ensor, M., Ousley, A., Seghal, A. (1996) Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84: 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, T., Matsumoto, A., Kato, T. Jr., Togashi, S., Ryo, H., Ikenaga, M., Todo, T., Ueda, R., Tanimura, T. (1999) DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes to Cells 4 (1): 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, M. (1998) Neural substrates of Drosophila rhythms revealed by mutants and molecular manipulations. Curr. Opin. Neurobiol. 8: 652–658.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, M., Helfrich-Förster, C., Hall, J.C. (1997) Spatial and temporal expression of the period and the timeless genes in the developing nervous system of Drosophila: Newly identified pacemaker candidates and novel features of clock-gene product cyclings. J. Neurosci. 17: 6745–6760.

    PubMed  CAS  Google Scholar 

  • Kaneko, M., Hamblen, M., Hall, J.C. (2000) Involvement of the period gene in developmental time-memory: Effect of the per`“’” mutation: J. Biol. Rhythms 15: 13–30.

    Article  PubMed  CAS  Google Scholar 

  • Klemm, E., Ninnemann, H. (1976) Detailed action spectrum for the delay shift in pupae emergence of Drosophila pseudoobscura. Photochem. Photobiol. 24: 369–371.

    Article  Google Scholar 

  • Kloss, B. Price, J.L., Saez, L. Blau, J., Rothenfluh, A., Wesley, C.S., Young, M.W. (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase I. Cell 94: 97–107.

    Article  Google Scholar 

  • Konopka, R.J., Pittendrigh, C., Orr, D. (1989) Reciprocal behavior associated with altered homeostasis and photosensivity of Drosophila clock mutants. J. Neurogenet. 6: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, B. Dryer, S.E., Hardin, P.E. (1999) Circadian rhythms in olfactory responses of Drosophila. Nature 400: 375–378.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Parikh, V., Itsukaichi, T., Bae, K., Edery, I. (1996) Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science 271: 1740–1744.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M.P., Wagner-Smith, K.K., Rothenfluh-Hilfiker, A., Young, M.W. (1996) Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271: 1736–1740.

    Article  PubMed  CAS  Google Scholar 

  • Naidoo, N., Song, W., Hunter-Ensor, M., Seghal, A. (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285: 1737–1741.

    Article  PubMed  CAS  Google Scholar 

  • Ohata, K., Nishiyama, H., Tsukahara, Y. (1998) Action spectrum of the circadian clock photoreceptor in Drosophila melanogaster. In: Touitou, Y. (ed.) Biological clocks: Mechanisms and Applications. Amsterdam, Elsevier. pp. 167–171.

    Google Scholar 

  • Peterson, G., Hall, J.C., Rosbash, M. (1988) The period gene of Drosophila carries species-specific behavioral instructions. EMBO J. 7: 3939–3947.

    Google Scholar 

  • Pittendrigh, C.S. (1967) The driving oscillation and its assay in Drosophila pseudoobscura. Proc. Natl. Acad. Sci. USA 58: 1762–1767.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C.S., Minis, D.H. (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Naturalist 98: 261–294.

    Article  Google Scholar 

  • Plautz, J.D., Kaneko, M., Hall, J.C., Kay, S.A. (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278: 1632–1635.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, I. Hofbauer, A. (1991) Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster. Cell Tiss. Res. 266: 391–398.

    Article  Google Scholar 

  • Price, J.L., Dembinska, M.E., Young, M.W., Rosbash, M. (1995). Supression of PERIOD protein abundance and circadian cycling by the Drosophila clock mutation timeless. EMBO J. 14: 4044–4049.

    PubMed  CAS  Google Scholar 

  • Price, J.L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., Young, M.W. (1998) double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94: 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, J. Hardin, P. (1996) per mRNA cycling is locked to lights-off under photoperiodic conditions that support circadian feedback loop function. Mol. Cell. Biol. 16: 4182–4188.

    PubMed  CAS  Google Scholar 

  • Roenneberg, T. Foster, R.G. (1997) Twilight times: light and the circadian system. Photochem. Photobiol. 66: 549–561.

    Article  CAS  Google Scholar 

  • Rutila, J.E., Suri, V., Le, M., So, W.V., Rosbash, M., Hall, J.C. (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93: 805–814.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, D.S., Gillanders, S.W., Lewis, R.D. (1994) Light-pulse phase response curves for the locomotor activity rhythm in period mutants of Drosophila melanogaster. J. Insect Physiol. 40: 957–968.

    Article  CAS  Google Scholar 

  • Selby, C.P., Sancar, A. (1999) A third member of the photolyase/blue-light photoreceptor family in Drosophila: A putative circadian photoreceptor. Photochem. Photobiol. 69: 105–107.

    Article  PubMed  CAS  Google Scholar 

  • Stanewsky, R., Frisch, B., Brandes, C., Hamblen-Coyle, M.J., Rosbash, M., Hall, J.C. (1997) Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: mapping elements of the PER protein involved in circadian cycling. J. Neurosci. 17: 676–696.

    PubMed  CAS  Google Scholar 

  • Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., Rosbash, M., Hall, J.C. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95: 681–692.

    Article  PubMed  CAS  Google Scholar 

  • Suri, V., Qian, Z., Hall, J.C., Rosbash, M. (1998) Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron 21: 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Swinderen B. van, Hall, J.C. (1995) Analysis of conditioned courtship in dusky-Andante rhythm mutants of Drosophila. Learn. Mem. 1: 49–61.

    Article  Google Scholar 

  • Wheeler, D.A., Hamblen-Coyle, M.J., Dushay, M.S., Hall, J.C. (1993) Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind or both. J. Biol. Rhythms 8: 67–94.

    Article  PubMed  CAS  Google Scholar 

  • Winfree, A.T. (1970) Integrated view of resetting a circadian clock. J. Theoret. Biol. 28: 327–374.

    Article  CAS  Google Scholar 

  • Winfree, A.T. (1974) Suppressing Drosophila rhythm with dim light. Science 183: 970–972.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Emerson, M., Su, H.S., Seghal, A. (1998) Response of the timeless protein to light correlates with behavioral entrainment and suggests a non-visual pathway for circadian photoreception. Neuron 21: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Yasuyama, K., Meinertzhagen, I.A. (1999). Extraretinal photoreceptors at the compound eye’s posterior margin in Drosophila melanogaster. J. Comp. Neurol. 412: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Young, M.W. (1998) The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. 67: 135–152.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, H., Qian, Z., Myers, M.P., Rosbash, M. (1996) A light-entrainment mechanism for the Drosophila circadian clock. Nature 380: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, W.F., Goldsmith, T.H. (1971) Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depleted Drosophila. Science 171: 1167–1169.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helfrich-Förster, C., Engelmann, W. (2002). Photoreceptors for the Circadian Clock of the Fruitfly. In: Kumar, V. (eds) Biological Rhythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06085-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06085-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06087-2

  • Online ISBN: 978-3-662-06085-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics