Skip to main content

The Onset of Carbon Catabolic Repression and Interplay Between Specific Induction and Carbon Catabolite Repression in Aspergillus nidulans

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

In filamentous fungi, the expression of catabolic pathways involved in the utilization of alternative nutrients such as L-proline, nitrate, ethanol and more complex growth substrates such as plant cell wall polysaccharides, is required to adapt their metabolism to changes in available nutritional carbon and nitrogen sources. This expression is governed by two regulatory circuits, specific induction and wide-domain catabolic repression. Induction in response to an external inducer is mediated by a pathway-specific activator, in most cases a DNA-binding protein of the zinc binuclear cluster family. When a rich carbon and/or nitrogen source, such as glucose or ammonium, is available general carbon or nitrogen metabolite repression of these alternative catabolic pathways occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arst HN Jr (1981) Aspects of the control of gene expression in fungi. In: Glover SW, Hopwood DA (eds) Genetics as a tool in microbiology. Society for General Microbiology Symposium, vol 31. Cambridge Univ Press, Cambridge, pp 131–160

    Google Scholar 

  • Arst HN Jr, Cove DJ (1970) Molybdate metabolism in Aspergillus nidulans. II. Mutations affecting phosphatase activity or galactose utilization. Mol Gen Genet 108:146–153

    Article  PubMed  CAS  Google Scholar 

  • Arst HN Jr, Cove DJ (1973) Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126:111–141

    Article  PubMed  CAS  Google Scholar 

  • Arst HN Jr, MacDonald DW (1975) A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254:26–34

    Article  PubMed  CAS  Google Scholar 

  • Arst HN Jr, Bailey CR (1977) The regulation of carbon metabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. British Mycological Society Symposium series, vol 1. Academic Press, London, pp 131–146

    Google Scholar 

  • Arst HN Jr, Scazzocchio C (1985) Formal genetics and molecular biology of the control of gene expression. In: Bennett JW, Lasure L (eds) Gene manipulations in Fungi. Academic Press, San Diego, pp 310–337

    Google Scholar 

  • Arst HN Jr, MacDonald DW, Cove DJ (1970) Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Mol Gen Genet 108:129–145

    Article  PubMed  CAS  Google Scholar 

  • Arst HN Jr, MacDonald DW, Jones SA (1980) Regulation of proline transport in Aspergillus nidulans. J Gen Microbiol 116:285–294

    CAS  Google Scholar 

  • Arst HN Jr, Tollervey D, Dowzer CEA, Kelly JM (1990) An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite derepression. Mol Microbiol 4:851–854

    Article  PubMed  CAS  Google Scholar 

  • Axelrod JD, Reagan MS, Majors J (1993) GAL4 disrupts a repressing nucleosome during activation of GAL1 transcription in vivo. Genes Dev 7:857–869

    Article  PubMed  CAS  Google Scholar 

  • Bailey C, Arst HN Jr (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51:573–577

    Article  PubMed  CAS  Google Scholar 

  • Bonifacio JS, Weissman AM (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 14:19–57

    Article  Google Scholar 

  • Burger G, Strauss J, Scazzocchio C, Lang BF (1991) nirA, the pathway-specific regulatory gene of nitrate assimilation in Aspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly conserved regions. Mol Cell Biol 11: 5746–5755

    PubMed  CAS  Google Scholar 

  • Cahuzac B, Felenbok B, Guittet E (1999) Structure par RMN d’un complexe AlcR(1–60)-ADN: reconnaissance du petit sillon par la partie N-terminale. J Chim Phys 96:1573–1579

    Article  CAS  Google Scholar 

  • Cahuzac B, Cerdan R, Felenbok B, Guittet E (2001) The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA-binding of a Zn2Cys6 protein. Structure 9:827–836

    Article  PubMed  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Cazelle B, Pokorska A, Hull E, Green PM, Stanway G, Scazzocchio C (1998) Sequence, exon-intron organization, transcription and mutational analysis of prnA, the gene encoding the transcriptional activator of the prn gene cluster in Aspergillus nidulans. Mol Microbiol 28:355–370

    Article  PubMed  CAS  Google Scholar 

  • Cerdan R, Cahuzac B, Felenbok B, Guittet E (2000) NMR solution structure of AlcR(l-60) provides insight in the unusual DNA binding properties of this zinc binuclear cluster protein. J Mol Biol 295:729–736

    Article  PubMed  CAS  Google Scholar 

  • Cubero B, Gomez D, Scazzocchio C (2000) Metabolite repression and inducer exclusion in the proline utilisation gene cluster of Aspergillus nidulans. J Bacteriol 182:233–235

    Article  PubMed  CAS  Google Scholar 

  • Cziferszky A, Mach RL, Kubicek CP (2002) Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Crel of Hypocrea jecorina (Trichoderma reesei). J Biol Chem 277:14688–14694

    Article  PubMed  CAS  Google Scholar 

  • Davie JK, Trumbly RJ, Dent SYR (2002) Histone-dependent association of Tupl-Ssn6 with repressed genes in vivo. Mol Cell Biol 22:693–703

    Article  PubMed  CAS  Google Scholar 

  • De la Cera T, Herrero P, Moreno-Herrero F, Chaves RS, Moreno F (2002) Mediator factor Med8p interacts with the hexokinase 2: implications in the glucose signalling pathway of Saccharomyces cerevisiae. J Mol Biol 319:703–714

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Jarana J, Moreno-Mateos MA, Benftez T (2003) Glucose uptake in Trichoderma harzianum: role of gttl. Eukaryot Cell 2:708–717

    Article  PubMed  CAS  Google Scholar 

  • De Vit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Migl glucose repressor. Mol Biol Cell 8:1603–1618

    PubMed  Google Scholar 

  • De Vries RP, Visser J, de Graaff LH (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150:281–285

    Article  PubMed  Google Scholar 

  • Di Mauro ED, Kendrew SG, Caserta M (2000) Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiœ ADH2 promoter. J Mol Biol 275:7612–7618

    Google Scholar 

  • Ebbole DJ (1998) Carbon catabolite repression of gene expression and conidiation in Neurospora crassa. Fungal Genet Biol 25:15–21

    Article  PubMed  CAS  Google Scholar 

  • Elorza MV, Arst HN Jr (1971) Sorbose resistant mutants of Aspergillus nidulans. Mol Gen Genet 111:185–193

    Article  PubMed  CAS  Google Scholar 

  • Entian K-D (1980) Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet 178:633–637

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Fernandez-Canon JM, Penalva MA (1995) Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of the mutations in creB and creC. FEMS Microbiol Lett 126:63–68

    Article  PubMed  CAS  Google Scholar 

  • Fascher K-D, Schmitz J, Hörz W (1993) Structural and functional requirements for the chromatin transition at the PH05 promoter in Saccharomyces cerevisiae upon PH05 activation. J Mol Biol 231:658–667

    Article  PubMed  CAS  Google Scholar 

  • Felenbok B, Sealy-Lewis HM (1994) Alcohol metabolism. Prog Industr Microbiol 29:141–179

    CAS  Google Scholar 

  • Felenbok B, Kelly JM (1996) Regulation of carbon metabolism in mycelial fungi. In: Marzluf G, Brambl R (eds) The Mycota III: biochemistry and molecular biology, 1st edn. Springer, Berlin Heidelberg New York, pp 369–380

    Google Scholar 

  • Felenbok B, Sequeval D, Mathieu M, Sibley S, Gwynne DI, Davies RW (1988) The ethanol regulon in Aspergillus nidulans: characterization and sequence of the positive regulatory gene, alcR. Gene 73:385–396

    Article  PubMed  CAS  Google Scholar 

  • Felenbok B, Flipphi M, Nikolaev I (2001) Ethanol catabo-lism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucleic Acid Res Mol Biol 69:149–204

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S (1996) Identification et étude fonctionnelle de nouveaux gènes appartenant au régulon éthanol chez Aspergillus nidulans. PhD Thesis, Université Paris-Sud XI, Orsay, France

    Google Scholar 

  • Fillinger S, Felenbok B (1996) A newly identified gene cluster in Aspergillus nidulans comprises five novel genes localized in the ale region that are controlled both by the specific transactivator AlcR and the general carbon-catabolite repressor CreA. Mol Microbiol 20:475–488

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S, Panozzo C, Mathieu M, Felenbok B (1995) The basal level of transcription of the ale genes in the ethanol regulon in Aspergillus nidulans is controlled both by the specific transactivator AlcR and the general carbon catabolite repressor CreA. FEBS Lett 368:547–550

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Mathieu M, Cirpus I, Panozzo C, Felenbok B (2001) Regulation of the aldehyde dehydrogenase gene (aldA) and its role in the control of the coinducer level necessary for induction of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 276: 6950–6958

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Kocialkowska J, Felenbok B (2002) Characteristics of physiological inducers of the ethanol utilization (ale) pathway in Aspergillus nidulans. Biochem J 364:25–31

    PubMed  CAS  Google Scholar 

  • Flipphi M, van de Vondervoort PJI, Ruijter GJG, Visser J, Arst HN Jr, Felenbok B (2003a) Onset of carbon catabolite repression in Aspergillus nidulans: parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem 278:11849–11857

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Kocialkowska J, Felenbok B (2003b) Relationships between the ethanol utilization (ale) pathway and unrelated catabolic pathways in Aspergillus nidulans. Eur J Biochem 270:3555–3564

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    PubMed  CAS  Google Scholar 

  • Gaudreau L, Schmid A, Blaschke D, Ptashne M, Hörz W (1997) RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PH05 promoter. Cell 89:55–62

    Article  PubMed  CAS  Google Scholar 

  • Gomez D, Cubero B, Cecchetto G, Scazzocchio C (2002) PrnA, a Zn2Cys6 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Mol Microbiol 44:585–597

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez R, Scazzocchio C (1997) A rapid method for chromatin structure analysis in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 25:3955–3956

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–112

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (2001) Protein degradation by monoubiquitin. Nat Rev Mol Cell Biol 2:195–201

    Article  PubMed  CAS  Google Scholar 

  • Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, Keller N (2001) RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Mol Microbiol 39:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Winderickx J, de Winde JH, Valckx D, Cobbaert P, Luyten K, de Meirsman C, Ramos J, Thevelein JM (1999) Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology 145:703–714

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Kelly JM (1977) Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet 150:193–204

    Article  PubMed  CAS  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet 15:29–33

    Article  PubMed  CAS  Google Scholar 

  • Kahana A (2001) The deubiquitinating enzyme Dot4p is involved in regulating nutrient uptake. Biochem Biophys Res Commun 282:916–920

    Article  PubMed  CAS  Google Scholar 

  • Komachi K, Redd MJ, Johnson AD (1994) The WD repeats of Tupl interact with the homeodomain protein α2. Genes Dev 8:2857–2867

    Article  PubMed  CAS  Google Scholar 

  • Kraakman LS, Winderickx J, Thevelein JM, de Winde JH (1999) Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochem J 343: 159–168

    Article  PubMed  CAS  Google Scholar 

  • Kuchin S, Treich I, Carlson M (2000) A regulatory shortcut between the Snfl protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 97:7916–7920

    Article  PubMed  CAS  Google Scholar 

  • Kulmburg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B (1992a). Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 12:1932–1939

    PubMed  CAS  Google Scholar 

  • Kulmburg P, Judewicz N, Mathieu M, Lenouvel F, Sequeval D, Felenbok B (1992b) Specific binding sites for the activator protein, ALCR, in the alcA promoter of the ethanol regulon of Aspergillus nidulans. J Biol Chem 267:21146–21153

    PubMed  CAS  Google Scholar 

  • Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) The specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Ebbole DJ (1998) Tissue-specific repression of starvation and stress responses of the Neurospora crassa con-10 gene is mediated by RCOl. Fungal Genet Biol 23:269–278

    Article  PubMed  CAS  Google Scholar 

  • Lenouvel F, Nikolaev I, Felenbok B (1997) In vitro recognition of specific DNA targets by AlcR, a zinc binuclear cluster activator different from the other proteins of this class. J Biol Chem 272:15521–15526

    Article  PubMed  CAS  Google Scholar 

  • Lo W-S, Duggan L, Emre NCT, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL (2001) Snfl-a histone kinase that works in concert with the histone acetyltrans-ferase Gcn5 to regulate transcription. Science 293: 1142–1146

    Article  PubMed  CAS  Google Scholar 

  • Lobo Z, Maitra PK (1977) Physiological role of glucose-phosphorylating enzymes in Saccharomyces cerevisiae. Arch Biochem Biophys 182:639–645

    Article  CAS  Google Scholar 

  • Lockington RA, Kelly JM (2001) Carbon catabolite repression in Aspergillus nidulans involves deubiquitina-tion. Mol Microbiol 40:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Kelly JM (2002) The WD40-repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans. Mol Microbiol 43:1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Sealy-Lewis HM, Scazzocchio C, Davies RW (1985) Cloning and characterization of the ethanol utilization regulon in Aspergillus nidulans. Gene 33:137–149

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Scazzocchio C, Sequeval D, Mathieu M, Felenbok B (1987) Regulation of alcR, the positive regulatory gene of the ethanol utilization regulon of Aspergillus nidulans. Mol Microbiol 1:275–281

    Article  PubMed  CAS  Google Scholar 

  • MacCabe AP, Miro P, Ventura L, Ramön D (2003) Glucose uptake in germinating Aspergillus nidulans conidia: involvement of the ere A and sorA genes. Microbiology 149:2129–2136

    Article  PubMed  CAS  Google Scholar 

  • Madi L, Ebbole DJ, White BT, Yanofsky C (1994) Mutants of Neurospora crassa that alter gene expression and conidia development. Proc Natl Acad Sci USA 91: 6226–6230

    Article  PubMed  CAS  Google Scholar 

  • Madi L, McBride SA, Bailey LA, Ebbole DJ (1997) rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146:499–508

    PubMed  CAS  Google Scholar 

  • Marie G, Serani L, Laprévote O, Cahuzac B, Guittet E, Felenbok B (2001) Differential chemical labeling of the AlcR DNA-binding domain from Aspergillus nidulans versus its complex with the 16-mer DNA target: identification of an essential tryptophan involved in the recognition and the interaction with the nucleic acid. Protein Sci 10:99–107

    Article  PubMed  CAS  Google Scholar 

  • Mark CG, Romano AH (1971) Properties of the hexose transport systems of Aspergillus nidulans. Biochim Biophys Acta 249:216–226

    Article  PubMed  CAS  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    PubMed  CAS  Google Scholar 

  • Mathieu M, Felenbok B (1994) The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through a competition with the ALCR specific transactivator. EMBO J 13:4022–4027

    PubMed  CAS  Google Scholar 

  • Mathieu M, Fillinger S, Felenbok B (2000) In vivo studies of upstream regulatory ds-acting elements of the alcR gene encoding the transactivator of the ethanol regulon in Aspergillus nidulans. Mol Microbiol 36: 123–131

    Article  PubMed  CAS  Google Scholar 

  • Moreira JMA, Holmberg S (1998) Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J 17:6028–6038

    Article  PubMed  CAS  Google Scholar 

  • Muro-Pastor MI, Gonzalez R, Strauss J, Narendja F, Scazzocchio C (1999) The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J 18:1584–1597

    Article  PubMed  CAS  Google Scholar 

  • Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant Microbe Interact 11:167–176

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev I, Lenouvel F, Felenbok B (1999a) Unique DNA binding specificity of the binuclear zinc AlcR activator of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 274:9795–9802

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev I, Cochet M-F, Lenouvel F, Felenbok B (1999b) A single amino acid, outside the AlcR zinc binuclear cluster, is involved in DNA binding and in transcriptional regulation of the ale genes in Aspergillus nidulans. Mol Microbiol 31:1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev I, Cochet M-F, Felenbok B (2003) Nuclear import of zinc binuclear cluster proteins proceeds through multiple overlapping transport pathways. Eukaryot Cell 2:209–221

    Article  PubMed  CAS  Google Scholar 

  • Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    PubMed  Google Scholar 

  • Page MM (1971) Genetics and biochemical studies of the catabolism of amines and alcohols in Aspergillus nidulans. PhD Thesis, Univ Cambridge, UK

    Google Scholar 

  • Panozzo C, Capuano V, Fillinger S, Felenbok B (1997) The zinc binuclear cluster activator AlcR is able to bind to single sites, but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. J Biol Chem 272:22859–22865

    Article  PubMed  CAS  Google Scholar 

  • Panozzo C, Cornillot E, Felenbok B (1998) The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem 273:6367–6372

    Article  PubMed  CAS  Google Scholar 

  • Pateman JA, Doy CH, Olsen JE, Norris U, Creaser EH, Hynes MJ (1983) Regulation of alcohol dehydrogenase and aldehyde dehydrogenase in Aspergillus nidulans. Proc R Soc Lond Ser B 217:243–264

    Article  CAS  Google Scholar 

  • Pokorska A, Drevet C, Scazzocchio C (2000) The analysis of the transcriptional activator PrnA reveals a tripartite nuclear localisation sequence. J Mol Biol 298:585–596

    Article  PubMed  CAS  Google Scholar 

  • Proft M, Serrano R (1999) Repressors and upstream repressing sequences of the stress-regulated EN Al gene in Saccharomyces cerevisiae: bZIP protein Skolp confers HOG-dependent osmotic regulation. Mol Cell Biol 19:537–546

    PubMed  CAS  Google Scholar 

  • Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature 386:569–577

    Article  PubMed  CAS  Google Scholar 

  • Roberts CF (1963) The genetic analysis of carbohydrate utilization in Aspergillus nidulans. J Gen Microbiol 31: 45–58

    PubMed  CAS  Google Scholar 

  • Rodriguez A, de la Cera T, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631

    PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    PubMed  CAS  Google Scholar 

  • Ruijter GJG, Panneman H, van den Broeck HC, Bennett JM, Visser J (1996) Characterisation of the Aspergillus nidulans frAl mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. FEMS Microbiol Lett 139:223–228

    PubMed  CAS  Google Scholar 

  • Scazzocchio C, Gavrias V, Cubero B, Panozzo C, Mathieu M, Felenbok B (1995) Carbon catabolite repression in Aspergillus nidulans, a review. Can J Bot 73:S160-S166

    Article  Google Scholar 

  • Schmid A, Fascher K-D, Hörz W (1992) Nucleosome disruption at the yeast PH05 promoter upon PH05 induction occurs in the absence of DNA replication. Cell 71:853–864

    Article  PubMed  CAS  Google Scholar 

  • Shroff RA, Lockington RA, Kelly JM (1996) Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can J Microbiol 42:950–959

    Article  PubMed  CAS  Google Scholar 

  • Shroff RA, O’Connor SM, Hynes MJ, Lockington RA, Kelly JM (1997) Null alleles of ere A, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol 22:28–38

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tupl: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    Article  PubMed  CAS  Google Scholar 

  • Springael J-Y, Nikko E, André B, Marini A-M (2002) Yeast Npi3/Brol is involved in ubiquitin-dependent control of permease trafficking. FEBS Lett 517:103–109

    Article  PubMed  CAS  Google Scholar 

  • Stafford GA, Morse RH (1997) Chromatin remodeling by transcriptional activation domains in a yeast episome. J Biol Chem 272:11526–11534

    Article  PubMed  CAS  Google Scholar 

  • Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP (1999) The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol 32:169–178

    Article  PubMed  CAS  Google Scholar 

  • Suárez T, Oestreicher N, Penalva MA, Scazzocchio C (1991) Molecular cloning of the uaY regulatory gene of Aspergillus nidulans reveals a favoured region for DNA insertions. Mol Gen Genet 230:369–375

    Article  PubMed  Google Scholar 

  • Tani S, Katsuyama Y, Hayashi T, Suzuki H, Kato M, Gomi K, Kobayashi T, Tsukagoshi N (2001) Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans. Curr Genet 39:10–15

    Article  PubMed  CAS  Google Scholar 

  • Terrell AR, Wongwisansri S, Pilon JL, Laybourn PJ (2002) Reconstitution of nucleosome positioning, remodeling, histone acetylation, and transcriptional activation on the PH05 promoter. J Biol Chem 277:31038–31047

    Article  PubMed  CAS  Google Scholar 

  • Todd RB, Lockington RA, Kelly JM (2000) The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol Gen Genet 263:561–570

    Article  PubMed  CAS  Google Scholar 

  • Tonukari NJ, Scott-Craig JS, Walton JD (2000) The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12:237–247

    PubMed  CAS  Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by Ssn6-Tupl is directed by Migl, a repressor/activator protein. Proc Natl Acad Sci USA 92:3132–3136

    Article  PubMed  CAS  Google Scholar 

  • Tzamarias D, Struhl K (1994) Functional dissection of the yeast Cyc8-Tupl transcriptional co-repressor complex. Nature 369:758–761

    Article  PubMed  CAS  Google Scholar 

  • Vautard G, Cotton P, Fèvre M (1999) The glucose repressor CRE1 from Sclerotinia sclerotiorum is functionally related to CREA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae. FEBS Lett 453:54–58

    Article  PubMed  CAS  Google Scholar 

  • Vautard-Mey G, Cotton P, Fèvre M (1999) Expression and compartimentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum. Eur J Biochem 266:252–259

    Article  PubMed  CAS  Google Scholar 

  • Vautard-Mey G, Fèvre M (2000) Mutation of a putative AMPK phosphorylation site abolishes the repressor activity but not the nuclear targeting of the fungal glucose regulator CRE1. Curr Genet 37:328–332

    Article  PubMed  CAS  Google Scholar 

  • Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA 98:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Wilson RA, Arst HN Jr (1998) Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family of transcription factors. Microbiol Mol Biol Rev 62:586–596

    PubMed  CAS  Google Scholar 

  • Yamashiro CT, Ebbole DJ, Lee B-U, Brown RE, Bourland C, Madi L, Yanofsky C (1996) Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homologue of Tupl of Saccharomyces cerevisiae. Mol Cell Biol 16:6218–6228

    PubMed  CAS  Google Scholar 

  • Yu J, Chang P-K, Bhatnagar D, Cleveland TE (2000) Cloning of a sugar utilization gene cluster in Aspergillus parasiticus. Biochim Biophys Acta 1493:211–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flipphi, M., Felenbok, B. (2004). The Onset of Carbon Catabolic Repression and Interplay Between Specific Induction and Carbon Catabolite Repression in Aspergillus nidulans . In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics