Skip to main content

Abstract

With the Kety and Schmidt technique the average values of CBF in awake normocapnic adult range from 45 to 67 ml/100g/min (Kety and Schmidt 1945, Schienberg and Stead 1949, Sokoloff et al. 1957, Lassen et al. 1960, Cohen et al. 1967). Generally, 50 ml/100g/min is used as reference (Lassen 1959). As incomplete tracer equilibrium influences the result, correction based on a computer-based simulation model indicates a global flow of 46 ml/100g/min (Lund Madsen et al. 1993). With the intraarterial approach, initial slope index as described by Olesen et al. (1971) averages 65 ml/100g/min. Using the same technique and compartment analysis CBF in the fast and slow compartments (grey and white matter) was 80 and 20 ml/100g/min respectively (Ingvar et al. 1965).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaslid R, Lindegaard KF, Sorteberg W, Norries H. Cerebral autoregulation dynamics in human. Stroke 1989: 20: 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Adams JE, Elliot H, Sutherland VC, et al. Cerebral metabolic studies of hypothermia in the human. Surg Forum 1957: 7: 535–539.

    CAS  PubMed  Google Scholar 

  • Agnoli A, Battistini N, Bozza L, Fieschi C. Drug action on regional cerebral blood flow in cases of acute cerebrovascular involvment. Acta Neurol Scand 1965: suppl 14: 142–144.

    CAS  Google Scholar 

  • Albrecht RF, Ruttle M. Central effect of extended hyperventilation in unanaeshtetizewd goats. Stroke 1987: 18: 649–655.

    Article  CAS  PubMed  Google Scholar 

  • Alexander SC, Smith TC, Strobel G, et al. Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis. J Appl Physiol 1968: 24: 66–72.

    CAS  PubMed  Google Scholar 

  • Allen GC, Morris LE. Central nervous system effects of hyperventilation during anaesthesia. Br J Anaesth 1962: 24: 296–306.

    Article  Google Scholar 

  • Allen SJ, Giezentanner A, Cronau LH, et al. Whole body hyperthermia increases cerebral blood flow and impairs cerebral autoregulation. Anesthesiology 1986: 65: A321.

    Article  Google Scholar 

  • Altman DI, Powers WJ, Perlman JM, et al. Cerebral blood flow requirement for brain viability in newborn infants is lower than adults. Ann Neurol 1988: 24: 218–226.

    Article  CAS  PubMed  Google Scholar 

  • Altura BM, Gebrewold A, Lassoff S. Biphasic reponsiveness of rat pial arterioles to dopamine. Direct observation of the microvasculature. Br J Pharmacol 1980: 69: 543–544.

    Article  CAS  PubMed  Google Scholar 

  • Artru AA, Michenfelder JD. Effects of hypercapnia on canine cerebral metabolism and blood flow with simultaneous direct and indirect measurement of blood flow. Anesthesiology 1980: 52: 466–469.

    Article  CAS  PubMed  Google Scholar 

  • Artru AA, Nugent M, Michenfelder JD. Anesthetics affect the cerebral metabolic reponse to circulatory chatecholamines. J Neurochem 1981: 36: 1941.

    Article  CAS  PubMed  Google Scholar 

  • Artru AA; Coley PS. Cerebral blood flow responses to hypo-capnia during hypotension. Stroke 1984: 15: 878–883.

    Article  CAS  PubMed  Google Scholar 

  • Artru AA, Reduction of cerebrospinal fluid pressure by hypo-capnia. J Cereb Blood Flow Metab 1987: 7: 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Artru AA, Hornbein TF. Prolonged hypocapnia does not alter the rate of CSF production during halothane anaesthesia or sedation with nitrous oxide. Anesthesiology 1987: 67: 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Artru AA, Katz RA, Coley PS, Autoregulation of cerebral blood flow during normocapnia and hypocapnia in dogs. Anesthesiology 1989: 70: 288–292.

    Article  CAS  PubMed  Google Scholar 

  • Artru AA, Merriman HG. Hypocapnia added to hypertension to reserve EEG changes during carotid end-arterectomy. Anesthesiology 1989: 70: 1016–1018.

    Article  CAS  PubMed  Google Scholar 

  • Astrup J, Møller Sørensen P, Sørensen HR. Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital, and lidocaine. Anesthesiology 1981: 55: 263–268.

    Article  CAS  PubMed  Google Scholar 

  • Auer L. Origin and localization of Evans blue extravasation in acutely-induced hypertension in cats. Europ Neurol 1979: 17:211–215.

    Article  Google Scholar 

  • Bailes JE, Leavitt ML, Teeple E, et al. Ultraprofound hypothermia with complete blood substitution in a canine model. J Neurosurg 1991: 74: 781–788.

    Article  CAS  PubMed  Google Scholar 

  • Baker AJ, Zornow MH, Grafe MR, et al. Hypothermia prevents ischemia-induced increases in hippocampal glycine concentrations in rabbits. Stroke 1991: 22: 666–673.

    Article  CAS  PubMed  Google Scholar 

  • Barker WW, Ysohii F, Loewenstein DA, et al. Cerebrocerebellar relationship during behavioral activation. J Cereb Blood Flow Metab 1991: 11: 48–54.

    Article  CAS  PubMed  Google Scholar 

  • Baron JC, Bousser MG, Comar D, et al. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 1981: 20: 273–284.

    Article  CAS  PubMed  Google Scholar 

  • Battistini N, Casacchia M, Bartolini A, et al. Effects of hyperventilation on focal brain damage following middle cerebral artery occlusion. In: Cerebral blood flow, clinical and experimental results. Brock M et al. (eds) Springer Verlag, Berlin, 1969: 249–253.

    Chapter  Google Scholar 

  • Baumbach GL, Heistad DD. Heterogeneity of brain flow and permeability during acute hypertension. Am J Physiol 1985: 249: 629–637.

    Google Scholar 

  • Becker DP, Miller JD, Greenberg RP, et al. The outcome from severe head injury with early diagnosis and intensive management. J Neurosurg 1977: 47: 491–502.

    Article  CAS  PubMed  Google Scholar 

  • Beresford HR, Posner JB, Plum E Changes in brain lactate during induced cerebral seizures. Arch Neurol 1969: 20: 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Bering EA. Effects of profound hypothermia and circulatory arrest on cerebral oxygen metabolism and cerebrospinal fluid electrolyte composition in dogs. J Neurosurg 1974: 39: 199–205.

    Google Scholar 

  • Berntman L, Dahlgren N, Siesjö BK. Influence of intravenously administered catecholamines on cerebral oxygen consumption and blood flow in the rat. Acta Physiol Scand 1978: 104: 101.

    Article  CAS  PubMed  Google Scholar 

  • Berntman L, Dahlgren N, Siesjö BK. Cerebral blood flow and oxygen consumption in the rat brain during hypercapnia. Anesthesiology 1979: 50: 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Berntman L, Welch FA, Harp JR. Cerebral protective effect of low-grade hypothermia. Anesthesiology 1981: 55: 495–498.

    Article  CAS  PubMed  Google Scholar 

  • Betz E, Heuser D. Cerebral cortical blood flow during changes of acid-base equilibrium of the brain. J Appl Physiol 1967: 23: 726–733.

    CAS  PubMed  Google Scholar 

  • Bill A, Linder J, Sympathetic effect on cerebral blood vessels in acute hypertension. Acta Physiol Scand 1976: 96: 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Blasberg RG, Fenstermacher JD, Patlak SC. Transport of alpha-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 1983: 3: 8–32.

    Article  CAS  PubMed  Google Scholar 

  • Boels PJ, Verbeuren TJ, Vanhoutte PM. Moderate cooling depresses the accumulation and the release of newly synthet-ized catecholamines in isolated canine saphenous veins. Experientia 1985: 41: 1374–1377.

    Article  CAS  PubMed  Google Scholar 

  • Bolwig TG, Qistorff B. In vivo concentration of lactate in the brain of conscious rats before and during seizures: A new ultra-rapid technique for freeze-sampling of brain tissue. J Neurochem 1973: 21: 1345–1348.

    Article  CAS  PubMed  Google Scholar 

  • Bouzarth WF, Kazi KH, Bubelis I, Shenkin HA. Effect of temperature upon craniocerebral trauma. Am Med Ass 1967: 199: 567–569.

    Article  CAS  Google Scholar 

  • Boyd RJ, Connolly JE. Tolerance of anoxia of dogs brain at various temperature. Surg Forum 1961: 12: 408–410.

    CAS  PubMed  Google Scholar 

  • Boysen G, Ladegaard-Pedersen HJ, Henriksen H, et al. The effect of PaC02 on regional cerebral blood flow and internal carotid arterial pressure during carotid clamping. Anesthesiology 1971: 35: 286–300.

    Article  CAS  PubMed  Google Scholar 

  • Bozza MM, Maspes PE, Rossanda M. The control of brain volume and tension during intracranial operations. Br J An-aesth 1961: 33: 132–147.

    Article  Google Scholar 

  • Brawley BW, Strandness DE, Kelly WA. The phsyiologic response to therapy in experimental cerebral ischemia. Arch Neurol 1967: 17. 180–187.

    Article  CAS  PubMed  Google Scholar 

  • Brock M, Furuse M, Weber R, et al. Brain tissue pressure gradients. In: Intracranial Pressure II. Lundberg N, et al. (eds). Springer Verlag, Brilin. 1975: 215–220.

    Chapter  Google Scholar 

  • Brodersen P, Paulson OB, Bolwig TG, et al. Cerebral hyperae-mia in electrically induced epileptic seizures. Arch Neurol 1973: 28: 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Bryan RM, Cerebral blood flow and energy metabolism during stress. Am J Physiol 1990: 259 269–280.

    Google Scholar 

  • Burke AM, Greenberg JH, Sladky J, Reivich M. Regional variation in cerebral perfusion during acute hypertension. Neurology 1987: 37: 94–99.

    Article  CAS  PubMed  Google Scholar 

  • Busija DW, Wagerle LC, et al. Acetylcholine dramatically increases prostanoids synthesis in piglet parietal cortex. Brain Res. 1988: 439: 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Busto R, Dietrich D, Globus MY et al. Small differences in in-tra-ischemic brain temperature critically determine the extent of ischaemic neuronal injury. J Cereb Blood Flow Metab 1987: 7: 729–738.

    Article  CAS  PubMed  Google Scholar 

  • Busto R, Globus MY, Dietrich WD, et al. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989: 20: 904–910.

    Article  CAS  PubMed  Google Scholar 

  • Cain SM. An attemp to demonstrate cerebral anoxia during hyperventilation of anaesthetized dogs. J Appl Physiol 1963: 204: 323–326.

    CAS  Google Scholar 

  • Cain SM. Increased oxygen uptake with passive hyperventilation of dogs. J Appl Physiol 1070: 28: 4–7

    Google Scholar 

  • Carey BJ, Eames PJ, Blake MJ, et al. Dynamic cerebral autoregulation is unaffected by aging. Stroke 2000: 31: 2895–2900.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson C; Häggendal M, Siesjö BK. Protective effect of hypothermia in cerebral oxygen deficiency caused by arterial hypoxia. Anesthesiology 1976a: 44: 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson C, Hägerdal M, Sisjö BK. The effects of hyperthermia upon oxygen consumption and upon organic phosphate, glycolytic metabolites, citric acid cycle intermediates, and associated aminoacids in rat cerebral cortex. J Neurochem 1976b: 26: 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  • Cavill G, Simpson EJ, Mahajan RP. Factors affecting assessment of cerebral autoregulation using the transient hy-peraemic response test. Br J Anaesth 1998: 81: 317–321.

    Article  CAS  PubMed  Google Scholar 

  • Chan KH, Miller JD, Piper IR. Cerebral blood flow at constant cerebral perfusion pressure but changing arterial and intracranial pressure. Relationship to autoregulation. J Neurosurg Anesthesiol 1992: 4: 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chopp M, Zhang ZG, et al. The effect of hypothermia on transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1992: 12: 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Chen RYZ, Fan FC, Schuessler GB, et al. Regional cerebral blood flow and oxygen consumption of the canine brain during hemorrhagic hypotension. Stroke 1984: 15: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Chopp M, Knight R, Tidwell CD, et al. The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat. J Cereb Blood Flow Metab 1989: 9: 141–148

    Article  CAS  PubMed  Google Scholar 

  • Christensen MS. Acid-base changes in cerebrospinal fluid and blood, and blood volume changes following prolonged hyperventilation in man. Br J Anaesth 1974: 46: 348–357.

    Article  CAS  PubMed  Google Scholar 

  • Christensen MS. Prolonged artificial hyperventilation in cerebral apoplexy. Acta Anaesthesiol Scand 1976: suppl 62: 1–24.

    Article  CAS  Google Scholar 

  • Chugani HT, Phleps ME. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 1986: 231: 840–843.

    Article  CAS  PubMed  Google Scholar 

  • Chugani HT, Hovda DA, Villablance JR, et al. Metabolic maturation of the brain: A study of local cerebral glucose utilization in the developing cat. J Cereb Blood Flow Metab. 1991: 11:35–47.

    Article  CAS  PubMed  Google Scholar 

  • Clifton GL, Jiang JY, Lyeth BG. et al. Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 1991: 11: 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Cohen PJ, Wollman H, Alexander SC, et al. Cerebral carbohydrate metabolism in man during halothane anaesthesia. Effects of PaCO2 on some aspects of carbohydrate utilization. Anesthesiology 1964: 25: 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Cohen PJ. To dream the impossible dream (editorial view). Anesthesiology 1981: 55.491–493.

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Chang LH, Litt L, et al. Stability of brain intercellular lactate and 3IP-metabolite levels at reduced intracellular pH during prolonged hypercapnia in rats. J Cereb Blood Flow Metab 1990: 10: 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Cold GE, Jensen FT, Malmros R. The cerebrovascular CO2 reactivity during the acute phase of brain injury. Acta Anaes-thesiol Scand 1977a: 21: 222–231.

    Article  CAS  Google Scholar 

  • Cold GE, Jensen FT, Malmros R. The effects of PaCO2 reduction on regional cerebral blood flow in the acute phase of brain injury. Acta Anaesthesiol Scand 1977b: 21: 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Cold GE, Jensen FT. Cerebral autoregulation in unconscious patients with brain injury. Acta Anaesthesiol Scand 1978: 22: 270–280.

    Article  CAS  PubMed  Google Scholar 

  • Cold GE. Cerebral metabolic rate of oxygen (CMRO2) in the acute phase of brain injury. Acta Anaesthesiol Scand 1978: 22:249–256.

    Article  CAS  PubMed  Google Scholar 

  • Cold GE, Christensen MS, Schmidt K. Effect of two levels of induced hypocapnia on cerebral autoregulation in the acute phase of head injury coma. Acta Anaesthesiol Scand 1981: 25: 397–401.

    Article  CAS  PubMed  Google Scholar 

  • Collins RC, Posner JB, Plum F. Cerebral energy metabolism during electroshock seizures in mice. Am J Physiol 1970: 218: 943–950.

    CAS  PubMed  Google Scholar 

  • Connolly JE, Boyd RJ, Calvin JW. The protective effect of hypothermia in cerebral ischaemia. Experimental and clinical application by selective brain cooling in the human. Surgery 1962: 52: 15–24.

    CAS  PubMed  Google Scholar 

  • Cotev S. Severinghaus JW. Role of cerebrospinal fluid pH in management of respiratory problems. Anesth Analg 1969: 48: 42–47.

    CAS  PubMed  Google Scholar 

  • Cranston I, Marsden P, Matyka K, et al. Regional differences in cerebral blood flow and glucose utilization in diabetic man: the effect of insulin. J Cereb blood Flow Metab 1998: 18: 130–140.

    Article  CAS  PubMed  Google Scholar 

  • Cremer JE, Seville MP. Regional brain blood flow, blood volume and haematocrit values in the adult rat. J Cereb Blood Flow Metab 1983: 3: 254–256.

    Article  CAS  PubMed  Google Scholar 

  • Curran-Everett DC, Iwamoto J, Meredith MP, Krasney JA. Intracranial pressures and O2 extraction in conscious sheep during 72 h of hypoxia. Am J Physiol 1991: 261: 103–109.

    Google Scholar 

  • Czosnyka M, Picard J, Whitehouse H, Piechnik S. The hyperaemic response to transient reduction in cerebral perfusion pressure. Acta Neurochir 1992: 115: 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Czosnyka M, Smielewski P, Kirkpatrick P, et al. Monitoring of cerebral autoregulation in head-injured patients. Stroke 1996: 27: 829–834.

    Article  Google Scholar 

  • Czosnyka M, Smielewski P, Kirkpatrick P, et al. Continuous assessment of cerebral vasomotor reactivity in head injury. Neurosurgery 1997: 41: 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Dacey RG, Basett JE. Histaminergic vasodilation of intracerebral arterioles in the rat. J Cereb Blood Flow Metab 1987: 7: 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren N, Nilsson B, Sakabe T, Siesjö BK. The effect of in-domethacin on cerebral blood flow and oxygen consumption in the rat at normal and increased carbon dioxide tensions. Acta Physiol Scand 1981: 111: 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Dastur DK. Cerebral blood flow and metabolism in normal human aging, pathological aging and senile dementia. J Cereb Blood Flow Metab 1985: 5: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Daw EF, Moffitt EA, Michenfelder JD, Terry HR. Prrofound hypothermia. Can Anesth Soc J 1964: 11: 382–393.

    Article  CAS  Google Scholar 

  • Darby JM, Yonas H, Marion DW, Latchaw RE. Local inverse steal induced by hyperventilation in head injury. Neurosurgery 1988: 23: 84–88.

    Article  CAS  PubMed  Google Scholar 

  • DeAguilera ME, Vila JM, Irurzun A, et al. Endothelium-inde-pendent contractions of human cerebral arteries in response to vasopressin. Stroke 1990: 21: 1687–1793.

    Google Scholar 

  • De la Torré JC, Surgeon JW, Walker RH. Effects of locus co-eruleus stimulation on cerebral blood flow in selected brain regions. Acta Neurol Scand, suppl 64: 104–105.

    Google Scholar 

  • Deligne P, David M. Hibernation artificielle en neuro-chirugie. Evolution de nos techniques. Ann Anesth Franc 1966: 7: 117–129.

    Google Scholar 

  • Dempsey RJ, Combs DJ, Maley ME, et al. Moderate hypothermia reduces postischemic edema development and leucotriene production. Neurosurgery 1987: 21: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich WD, Busto R, Valdes I, Loor Y. Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 1990: 21: 1318–1325.

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U, Pulsinelli W Autoregulation of cerebral blood flow in experimental focal brain ischemia. J Cereb Blood Flow Metab 1990: 10: 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Drummond JC, Oh YS, Cole DJ, et al. Phenylephedrine-in-duced hypertension decreases the area of ischemia following middle cerebral artery occlusion in the rat. Stroke 1989: 20: 1538.

    Article  CAS  PubMed  Google Scholar 

  • DuCailar J, Rioux J, Groleau D, Villard F. Hypothermie au dessous de 25 par refrigeration externe et sans circulation extra-corporelle. Ann Anesth Franc 1964: 4: 781–800.

    Google Scholar 

  • Duelli R, Kuschinsky W. Changes in brain capillary diameter during hypocapnia and hypercapnia. J Cereb Blood Flow Metab 1993: 13: 1025–1028.

    Article  CAS  PubMed  Google Scholar 

  • Dutka AJ, Hallenbech JM, Kochanek P. A brief episode of severe arterial hypertension induces delayed deterioration of brain function and worsens blood flow after transient multifocal cerebral ischaemia. Stroke 1987: 18: 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Duverger D, Edvinsson L, MacKenzie ET, et al. Concentrations of putative neurovascular transmitters in major cerebral arteries and small pial vessels of various species. J Cereb Blood Flow Metab 1987: 7: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Cervos-Navarro J, Larsson LI, et al. Regional distribution of mast cells containing histamine, dopamine, or 5-hydroxytryptamine in the mammalian brain. Neurology 1977: 27: 878–883.

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Hardelia JE, MCCulloch J, Owman C. Vasomotor response of the cerebral blood vessels to dopamine and dopaminergic agonists. Adv Neurol 1978: 20: 85–96.

    CAS  PubMed  Google Scholar 

  • Edvinsson L, Hardebo JE, MacKenzie ET, Owman C. Effects of exogeneous noradrenaline on local cerebral blood flow after osmotic opening of the blood-brain barrier in the rat. J Physiol (Lond) 1978: 274: 149–156.

    CAS  Google Scholar 

  • Edvinsson L, McCulloch J, Rossell S., Uddman R. Antagonism by (D-pro 2, D-Trp 7,9)-substance P on the cerebrovascular dilatation induced by substance P. Acta Physiol Scand 1982: 116–411–423.

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Dequerce A, Duverger D, et al. Central serotonergic nerves project to the pial vessels of the brain. Nature 1983: 306: 55–58.

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Jansen I, Uddman R. Substance P and cerebral blood vessels. In: Hakanson R, Sundler F (eds). Nerve fibre supply and characterization of postsynaptic receptors in tachykinin antagonists. Amsterdam, Elsevier, 1985: 57–64.

    Google Scholar 

  • Edvinsson L, Copeland JR, Emson PC, et al. Nerve fibers containing neuropeptide Y in the cerebrovascular bed: Immu-nocytochemistry, radioimmunoassays, and vasomotor effects. J Cereb Blood Flow Metab 1987: 7: 45.

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Ekman R, Jansen I, et al. Calcitonin gene-related peptide and cerebral blood vessels: Distribution and vasomotor effects. J Cereb Blood Flow Metab 1987: 7: 720–728.

    Article  CAS  PubMed  Google Scholar 

  • Eintrei C, Lund N, Effects of increases in inspired oxygen fraction on brain surface pressure fields in pig and man. Acta Anaesthesiol Scand 1986: 30: 194–198.

    Article  CAS  PubMed  Google Scholar 

  • Eklöff B, Ingvar DH, Kågström E, Olin T. Persistance of cerebral blood flow autoregulation following chronic bilateral cervical sympathetomy in the monkey. Acta Physiol Scand 1971: 82: 172–176.

    Article  Google Scholar 

  • Ekström-Jodal B, Häggendal E, Nilsson NJ. On the relation between blood pressure and blood flow in the cerebral cortex of dogs. Acta Physiol Scand 1970: (suppl) 350: 29–42.

    Google Scholar 

  • Ekström-Jodal B, Häggendal Em Linder LE, et al. Cerebral blood flow autoregulation at high arterial pressures and different levels of carbondioxide tension in dogs. Europ Neurol 1972: 6: 6–10.

    Article  Google Scholar 

  • Ekström-Jodal V, von Essen C, Häggendal E. Effects of noradrenaline on the cerebral blood flow in the dog. Acta Neurol Scand 1974:50: 11.

    Article  PubMed  Google Scholar 

  • Ekström-Jodal B, Häggendal E, Johansson B, et al. Acute arterial hypertension and the blood-brain barrier. In Langfitt TW, et al. (eds) Cerebral Circulation and Metabolism, Springer Verlag, New York, 1975: 7–9.

    Chapter  Google Scholar 

  • Elfgren CI, Ryding E, Passant U. Performance on neuropsychological tests related to single photon emission computerised tomography findings in frontotemporal dementia. Br J Psychiatry 1996: 169: 416–422.

    Article  CAS  PubMed  Google Scholar 

  • Ellingsen I, Hauge A, Nicolaysen G, et al. Changes in human cerebral blood flow due to step changes in PaO2 and PaCO2. Acta Physiol Scand 1987: 129: 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Ellis EF, Dodson LY, Police RJ. Restoration of cerebrovascular responsiveness to hyperventilation by oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J Neurosurg 1991: 75: 774–779.

    Article  CAS  PubMed  Google Scholar 

  • Enevoldsen EM, Jensen FT. Autoregulation and CO2 responses of cerebral blood flow in patients with severe head injury. J Neurosurg 1978: 48: 689–703.

    Article  CAS  PubMed  Google Scholar 

  • Ewing JR, Robertson WM, Brown GG. et al. 133Xenon inhalation: Accuracy in detection of ischaemic cerebral regions and angiographic lesions. In Wood JH (ed). Cerebral Blood Flow Physiology and Clinical Aspects, McGraw-Hill Book Company 1985: 202–219.

    Google Scholar 

  • Faraci FM. Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol 1990: 259: 1216–1221.

    Google Scholar 

  • Faraci FM. Role of endothelium-derived relaxing factor in cerebral circulation: Large arteries vs. microcirculation. Am J Physiol 1991: 261: 1038–1042.

    Google Scholar 

  • Fasehun OA, Gross SS, Rubin LE, et al. L-arginine but not N-benzoyl-L-arginine ethyl ester is a precursor of endothelium-derived relaxing factor. J Pharmacol Exp Ther 1990: 255: 1348–1353.

    CAS  PubMed  Google Scholar 

  • Feruglio FS, Ruiu P, Ruiu L. La protata circulatoria, il consumo di O2 e la resistanza vasculare cerebrale delluomo nello stato di ibernazione artificiale con ipotermia. Minerva Med 1954: 45: 1655–1660.

    CAS  PubMed  Google Scholar 

  • Fieschi C, Battistini N, Beduchi A, et al. Regional cerebral blood flow and intraventricular pressure in acute head injuries: J Neurol Neurosurg Psychiat 1974: 37: 1378–1388.

    Article  CAS  PubMed  Google Scholar 

  • Fitch W, MacKenzie ET, Harper AM. Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon. Circulation Res 1975: 37: 550–557.

    Article  CAS  PubMed  Google Scholar 

  • Fog M. Om piaarteriernes vasomotoriske reaktion. Leven A (ed), Munksgaard, Copenhagen 1934.

    Google Scholar 

  • Forbes HS, Nason Gl, Wortman RC. Cerebral circulation. Arch Neurol Psychiat 1937: 37: 334–360.

    Article  Google Scholar 

  • Fourcade HE, Larson P, Ehrenfeld WK, et al. The effect of CO2 and systemic hypertension on cerebral perfusion pressure during carotid endarterectomy. Anesthesiology 1970: 33: 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Frackowiak RSJ, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography. Theory, procedure, and normal values. J Corn-put Assist Tomogr 1980: 4: 727–736.

    Article  CAS  Google Scholar 

  • Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM. Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia. J Cereb Blood Flow Metab 1994: 14: 193–205.

    Article  CAS  PubMed  Google Scholar 

  • Frietsch T, Krafft P, Piepgras A. et al. Relationship between local cerebral blood flow and metabolism during mild and moderate hypothermia in rats. Anesthesiology 2000: 92: 754–763.

    Article  CAS  PubMed  Google Scholar 

  • Fromann C. Adverse effects of low carbon dioxide tensions during mechanical over-ventilation of patienst with combined head and chest injuries. Br J Anaesth 1968: 40: 383–386.

    Article  Google Scholar 

  • Fukuyama H, Ogawa M, Yamauchi H, et al. Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 1994: 35: 1–6.

    CAS  PubMed  Google Scholar 

  • Gibbs JM, Frackowiak RS, Legg NJ. Regional cerebral blood flow and oxygen metabolism in dementia due to vascular disease. Gerontology 1986: 32 (suppl 1): 84–88.

    Article  PubMed  Google Scholar 

  • Giller CA. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir 1991:108: 7–14.

    Article  CAS  PubMed  Google Scholar 

  • Goadsby PJ, Lambert GA, Lance JW. Differential effects on the internal and external carotid circulation of the monkey evoked by locus coeruleus stimulation. Brain Research 1982: 249: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Gold ME, Wood KS, Byrns RE, et al. N-methyl-L-arginine causes endothelium-dependent contraction and inhibition of cyclic GMP formation in artery and vein. Proc Natl Acad Sci USA 1990: 87: 4430–4434.

    Article  CAS  PubMed  Google Scholar 

  • Gordon E. Nonoperative treatment of acute head injuries (The Karolinska Experience) Intern Anaesth Clin 1979: 17: 181–199.

    Article  CAS  Google Scholar 

  • Gotoh F, Meyer JS, Takagi Y. Cerebral effects of hyperventilation in man. Arch Neurol 1965: 12: 410–423.

    Article  CAS  PubMed  Google Scholar 

  • Granholm L, Siesjö BK. The effect of hypercapnia and hypo-capnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of the cat brain. Acta Phyiol Scand 1969: 75: 257–266.

    Article  CAS  Google Scholar 

  • Greisen G. Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr Scand 1986: 75: 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Grote J, Zimmer K, Schubert R. Effects of severe arterial hypo-capnia on regional cerebral blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats. Phlügers Arch 1981: 391: 195–199.

    Article  CAS  Google Scholar 

  • Greenberg JH, Alavi A, Reivich M, et al. Local cerebral blood volume response to carbon dioxide in man. Circ Res 1975: 43: 324–331.

    Article  Google Scholar 

  • Greenfield JC, Tindall GT. Effect of norepinephrine, epinephrine and angiotensin on blood flow in the internal carotid artery of man. J Clin Invest 1968: 47: 1672–1684.

    Article  CAS  PubMed  Google Scholar 

  • Greenfield JC, Rembert JC, Tindall GT. Transient changes in cerebral vascular resistance during the Valsalva maneuver in man. Stroke 1984: 15: 76–79.

    Article  PubMed  Google Scholar 

  • Greenwood J, Hazell AS, Luthert PJ. The effect of low pH saline perfusate upon the integrity of the energy-depleted rat blood-brain barrier. J Cereb Blood Flow Metab 1989: 9: 234–242.

    Article  CAS  PubMed  Google Scholar 

  • Greitz TV, Grepe AO, Kalmer MS, Lopez J. Pre- and postoperative evaluation of cerebral blood flow in low-pressure hydrocephalus. J Neurosurg 1969: 31: 644–651.

    Article  CAS  PubMed  Google Scholar 

  • Gross PM, Teasdale GM, Graham DI, et al. Intra-arterial histamine increases blood-brain barrier transport in rats. Am J Physiol 1982: 243: 307–317.

    Google Scholar 

  • Grupp RL, Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974: 5: 630–638.

    Article  Google Scholar 

  • Gupta AK, Menon DK, Czosnyka M, et al. Thresholds for hypoxic cerebral vasodilation in volunteers. Anesth Analg 1997: 85: 817–820.

    CAS  PubMed  Google Scholar 

  • Gur RC, Gur RE, Resnick SM, et al. The effect of anxiety on cortical cerebral blood flow and metabolism. J Cereb Blood Flow Metab 1987: 7: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Hägerdal M, Harp JR, Siesjö BK. Influence of changes in arterial PaCO2 on cerebral blood flow and cerebral energy state during hypothermia in the rat. Acta Anaesthesiol Scand 1975: suppl 57: 25–33.

    Article  Google Scholar 

  • Hägerdal M, Welch FA, Keykhah MM, et al. Protective effects of combinations of hypothermia and barbiturate in cerebral hypoxia in the rat. Anesthesiology 1978: 49: 165–169.

    Article  PubMed  Google Scholar 

  • Häggendal E, Johansson B. Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand 1965: suppl 258: 27–53.

    Article  Google Scholar 

  • Häggendal E, Johansson B. On the pathophysiology of the increased cerebrovascular permeability in acute arterial hypertension in cats. Acta Neurol Scand 1972: 48: 265–270.

    Article  PubMed  Google Scholar 

  • Haikala H, Karmalathi T, Ahtee L. The nicotine-induced changes in striated dopamine metabolism of mice depend on body temperature. Brain Res 1986: 375: 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Hampson NB, Camporesi EM, Stolp BW, et al. Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans. J Appl Physiol 1990: 69: 907–913.

    CAS  PubMed  Google Scholar 

  • Hanko J, Hardebo JE, Kahrström J, et al. Calcitonin gene-related peptide is present in mammalian cerebrovascular nerve fibers and dilates pial and peripheral arteries. Neurosci Lett 1985: 57: 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Hansen NB, Nowicki PT, Miller RR, et al. Alterations in cerebral blood flow and oxygen consumption during prolonged hypocapnia. Pediatr Res 1986: 20: 147–150.

    Article  CAS  PubMed  Google Scholar 

  • Hardebo JE, Beley A. Influence of blood pressure on blood-brain barrier function in brain ischaemia. Acta Neurol Scand 1984: 70: 356–359.

    Article  CAS  PubMed  Google Scholar 

  • Harik SI, Yoshida S, Busto R, Ginsberg MD. Monoamine neurotransmitters in diffuse reversible forebrain ischemia and early recirculation: Increased dopaminergic activity. Neurology 1986: 36: 971–976.

    Article  CAS  PubMed  Google Scholar 

  • Harp JR, Wollman H. Cerebral metabolic effects of hyperventilation and deliberate hypotension. Br J Anaesth 1973; 45: 256–262.

    Article  CAS  PubMed  Google Scholar 

  • Hartman BK, Zide D, Udenfriend S. The use of dopamine-beta-hydroxylase as a marker for the central noradrenergic nervous system in the rat brain. Proc Natl Acad Sci USA 1972: 69: 2722–2726.

    Article  CAS  PubMed  Google Scholar 

  • Hassan FM, Kazemi H, Dual contribution theory of regulation of CSF HCO3 - in respiratory acidosis. J Appl Physiol 1976: 40: 559–567.

    Google Scholar 

  • Havill JH. Prolonged hyperventilation and intracranial pressure. Critical Care Medicin 1984: 12: 72–74

    Article  CAS  Google Scholar 

  • Hauerberg J, Juhler M. Cerebral blood flow autoregulation in acute intracranial hypertension. J Cereb Blood Flow Metab 1994: 14: 519–525.

    Article  CAS  PubMed  Google Scholar 

  • Hauerberg J, Xiaodong M, Willumsen L, et al. The upper limit of cerebral blood flow autoregulation in acute intracranial hypertension. J Neurosurg Anesthesiol 1998: 10: 106–112.

    Article  CAS  PubMed  Google Scholar 

  • Heistad DD, Marcus ML, Abboud FM. Role of large arteries in regulation of cerebral blood flow in dogs. J Clin Invest 1978: 62: 761–768.

    Article  CAS  PubMed  Google Scholar 

  • Hilberman M, Nioka S., Subramanian H, et al. Brain pH during respiratory acidoses and alkalosis, a 31P NMR study. Anesthesiology 1984: 61: A317.

    Article  Google Scholar 

  • Hino A, Ueda S, Mizukawa N, et al. Effect of hemodilution on cerebral hemodynamics and oxygen metabolism. Stroke 1992: 23: 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Hirst RP, Slee TA, Lam AM. Changes in cerebral blood flow velocity after release of intraoperative tournequets in humans: A transcranial Doppler study. Anesth Analg 1990: 71: 503–510

    Article  CAS  PubMed  Google Scholar 

  • Hochwald GM, Wald A, Malhan C. The sink action of cerebrospinal fluid volume flow. Arch Neurol 1976: 33: 339–344.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann WE, Albrecht RF, Miletich DJ. The role of adenosine in CBF increases during hypoxia in young vs. aged rats. Stroke 1984: 15: 124.

    Article  Google Scholar 

  • Hoffman WE, Albrecht RD, Miletich DJ. Cerebrovascular response to hypoxia in young vs. aged rats. Stroke 1984: 15: 129.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman WE, Werner C, Baughman VL, et al. Postischemic treatment with hypothermia improves outcome from incomplete cerebral ischemia in rats. J Neurosurg Anesthesiol 1991: 3: 34–38.

    Article  CAS  PubMed  Google Scholar 

  • Hoop B, Masjedi M-R, Shih VE, Kazemi H. Brain glutamate metabolism during hypoxia and peripheral chemodener-vation. Am J Physiol 1990: 69: 147–154

    CAS  Google Scholar 

  • Horvath I, Sandor NT, Ruttner Z, McLaughlin AC. Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. J Cereb Blood Flow Metab 1994: 14: 503–509.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C. Does nitric oxide mediate the increase in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci USA. 1992: 89: 3913–3916.

    Article  CAS  PubMed  Google Scholar 

  • Illievich UM, Zoenow MH, Choi KT, et al. Effects of hypothermic metabolic suppression on hippocampal glutamate concentrations after transient global cerebral ischemia. Anesth Analg 1994: 78: 905–911.

    Article  CAS  PubMed  Google Scholar 

  • Imran MB, Kawashima R, Awata S, et al. Tc-99m HMPAO SPECT in the evaluation of Alzheimer’s disease: correlation between neuropsychiatrie evaluation and CBF images. J Neurol Neurosurg Psychiatry 1999: 66: 228–232.

    Article  CAS  PubMed  Google Scholar 

  • Ingvar DH, Cronquist S, Ekberg R, et al. Normal values of regional cerebral blood flow in man, including flow and weight estimates of gray and white matter. A preliminary summary. Acta Neurol Scand 1965: 41 [suppl 14]: 72–78

    Google Scholar 

  • Irikura K, Miyasaka Y, Nagai S, et al. Moderate hypothermia reduces hypotensive, but not hypercapnic vasodilation of pial arterioles in rats. J Cereb Blood Flow Metab 1998: 18: 1294–1297.

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Kanno I, Uemura K, et al. Comparison of carbon dioxide responsiveness of cerebellar blood flow between affected and unaffected sides with crossed cerebellar di-aschisis. Stroke 1994: 25: 826–830.

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Sasaki M, Yamaji S, et al. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer’s disease by means of H2 15O positron emission tomography. Eur J Nucl Med 1997: 24: 670–673.

    CAS  PubMed  Google Scholar 

  • Ito U, Ohno K, Yamaguchi T, Takei H, et al. Effect of hypertension on blood-brain barrier change after restoration of blood flow in post-ischaemic gerbil brains. Stroke 1980: 11: 606–611.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto J, Curran-Everett DC, Krasney E, Krasney JA. Cerebral metabolic and pressure-flow responses during sustained hypoxia in awake sheep. J Appl Physiol 1991: 71: 1447–1453

    CAS  PubMed  Google Scholar 

  • Jacobsen I, Harper MB, McDowall DG. The effect of O2 at 1 and 2 atmospheres on the blood flow and oxygen uptake of the cerebral cortex. Surg Gynecol Obstet 1964: 119: 737–742

    Google Scholar 

  • Jakobsen M, Enevoldsen EM, Bjerre P. Cerebral blood flow and metabolism following subarachnoid hemorrhage: Cerebral oxygen uptake and global blood flow during the acute period in patients with SAH. Acta Neurol Scand 1990: 82: 174–182.

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen M, Skjødt T, Enevoldsen EM. Cerebral blood flow and metabolism following subarachnoid hemorrhage: Effect of subarachnoid blood. Acta Neurol Scand 1991: 83: 226–233.

    Article  CAS  PubMed  Google Scholar 

  • Jarden JO, Barry DI, Juhler M, et al. Cerebrovascular aspects of converting-enzyme inhibition: II. Blood-brain barrier permeability and effect of intracerebroventricular administration of Captopril. J Hypertension 1984: 2: 599–604

    Article  CAS  Google Scholar 

  • Jarrott B, Hjelle JT, Spector S. Association of histamine with cerebral microvessels in regions of bovine brain. Brain Res 1979: 168: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Jennett B, Teasdale G, Fry J, et al. Treatment for severe head injury. J Neurol Neurosurg Psychiat 1980: 43: 289–295

    Article  CAS  PubMed  Google Scholar 

  • Johansson BB, Li C, Olsson Y, Klatzo I. The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropath 1970: 16: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Johansson BB. Blood brain barrier dysfunction in acute arterial hypertension after papaverine-induced vasodilatation. Acta Neurol Scand 1974: 50: 573–580.

    Article  CAS  PubMed  Google Scholar 

  • Johansson BB, Linder LE. Reversibility of the blood-brain barrier dysfunction induced by acute hypertension. Acta Neurol Scandinav 1978: 57: 345–348.

    Article  CAS  Google Scholar 

  • Johansson BB, Auer LM. Neurogenic modification of the vulnerability of the blood-brain barrier during acute hypertension in conscous rats. Acta Physiol Scand 1983: 117: 507–511.

    Article  CAS  PubMed  Google Scholar 

  • Johns RA, Peach MJ, Linden J, Tichotsky A. N-monomethyl-L-arginine inhibits endothelium-derived relaxing factor-stimulated cyclic GMP accumulation in cocultures of endothelial and vascular smooth muscle cells by an action specific to the endothelial cell. Circ Res 1990: 67: 979–985

    Article  CAS  PubMed  Google Scholar 

  • Jonsson G. Chemical lesioning techniques; monoamine neurotoxins. In Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy, Amsterdam, Elsevier 1983: 1: 463–507

    Google Scholar 

  • Kader A, Brisman MH, Maraire N, et al. The effect of mild hypothermia on permanent focal ischemia in the rat. Neurosurgery 1992: 31: 1056–1061.

    Article  CAS  PubMed  Google Scholar 

  • Karibe H, Chen J, Zarow GJ, et al. Delayed induction of mild hypothermia to reduce infarct volume after temporary middle cerebral artery occlusion in rats. J Neurosurg 1994: 80: 112–119.

    Article  CAS  PubMed  Google Scholar 

  • Katsumura H, Hosotani K, Kabuto M, et al. Influences of total body hyperthermia by extracorporal circulation on intracranial hemodynamics in dogs. In Intracranial Pressure VIII. Avezaat CJJ, van Eijndhoven JHM, Maas IAR, Tans JThJ (eds). Springer Verlag 1993: 203–206.

    Chapter  Google Scholar 

  • Kennealy JA, McLennan JE, Loudon G, McLaurin RL. Hyper-ventilation-induced cerebral hypoxia. Am Rev Resp Dis 1980: 122: 407–412.

    CAS  PubMed  Google Scholar 

  • Kennedy C, Sokoloff L. An Adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in children. J Clin Invest 1957: 36: 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  • Kety SS, Schmidt CF. The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 1945: 143: 53–66.

    CAS  Google Scholar 

  • Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J clin Invest 1948: 27: 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Kety SS; Schmidt CF. Effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948: 27: 484–492

    Article  CAS  PubMed  Google Scholar 

  • Keykhah MM, Hagerdal M, Welsh FA, et al. Effect of high vs. low arterial blood oxygen content on cerebral energy metabolite levels during hypoxia with normothermia and hypothermia in the rat. Anesthesiology 1980: 52: 492–495.

    Article  CAS  PubMed  Google Scholar 

  • King BD, Sokoloff L, Wechsler L. The effects of 1-epinephrine and 1-norepinephrine upon cerebral circulation and metabolism in man. J clin Invest 1952: 31: 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M, et al. Hyperthermia-in-duced neuronal protection against ischaemic injury in ger-bils. J Cereb Blood Flow Metab 1991: 11: 449–452

    Article  CAS  PubMed  Google Scholar 

  • Kitahata LM, Galicich JM, Sato I. The effect of passive hyperventilation on intracranial pressure. J Neurosurg 1971: 34: 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Khambatta HJ, Sullivan SF. Carbon dioxide production and washout during passive hyperventilation alkalosis. J Appl Physiol 1974: 37: 665–669

    CAS  PubMed  Google Scholar 

  • Klazo I. Presidential address — Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 1967: 26: 1–14

    Article  Google Scholar 

  • Kleinerman J, Sencetta SM, Hackel DB. Effects og high spinal anaesthesia on cerebral circulation and metabolism in man. J clin Invest 1958: 37: 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Kleiser B, Widder B. Course of carotid artery occlusion with impaired cerebrovascular reactivity. Stroke 1992: 23: 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Ko KR, Ngai AC, Winn HR. Role of adenosine in regulation of regional cerebral blood flow in sensory cortex. Am J Physiol 1990: 259: H1703–H1708

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Kyoshima K, Olschsowka JA, Jacobowitz DM. Vasoactive intestinal polypeptide immunoreactive and cholinergic nerves in the whole mount preparation of the major cerebral arteries. Histochemistry 1983: 79: 377–381

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Hayashi M, Kuwana H, et al. Effect of chemical sympathectomy on cerebral blood flow in rats. J Neurosurg 1991: 75: 906–910

    Article  CAS  PubMed  Google Scholar 

  • Kogure K, Schieberg P, Fujishima M, et al. Effects of hypoxia on cerebral autoregulation. Am J Physiol 1970: 219: 1393–1396

    CAS  PubMed  Google Scholar 

  • Komaba Y, Osono E, Kitamura S, Katayama Y. Crossed cerebel-locerebral diaschisis in patients with cerebellar stroke. Acta Neurol Scand 2000: 101: 8–12.

    Article  CAS  PubMed  Google Scholar 

  • Komatani A, Yamaguchi K, Sugai Y, et al. Assessment of demented patients by dynamic SPECT of inhaled xenon-133. J Nucl Med 1988: 29: 1621–1626.

    CAS  PubMed  Google Scholar 

  • Kontos HA, Wei EP, Navari RM, et al. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 1978: 234: H371–383.

    CAS  PubMed  Google Scholar 

  • Kontos HA, Wei EP, Dietrich WD, et al. Mechanism of cerebral arteriolar abnormalities after acute hypertension. Am J Physiol 1981: 240: H511–527.

    CAS  PubMed  Google Scholar 

  • Kopf GS, Mirvis DM, Myers RE. Central nervous system tolerance to cardiac arrest during profound hypothermia. J Surg Res 1975: 18: 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Kozniewska E, Oseka M, Stys T. Effects of endothelium-de-rived nitric oxide on cerebral circulation during nor-mooxia and hypoxia in the rat. J Cereb Blood Flow Metab 1992: 12:311–317.

    Article  CAS  PubMed  Google Scholar 

  • Kramer RS, Sanders AP, Lesage AM et al. The effect of profound hypothermia on preservation of cerebral ATP content during circulatory arrest. J Thorac Cardiov Surg 1968: 56: 699–709.

    CAS  PubMed  Google Scholar 

  • Krantis A. Hypothermia-induced reductions in the permeation of the radiolabeled tracer substances across the blood-brain barrier. Acta Neuropathol 1983: 60: 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Kreisman NR, Magee JC, Brizzee BL. Relative hypoperfusion in rat cerebral cortex during recurrent seizures. J Cereb Blood Flow Metab 1991: 11:77–87

    Article  CAS  PubMed  Google Scholar 

  • Kuroda S, Kamiyama H, Abe H et al. Acetazolamide test in detecting reduced cerebral perfusion reserve and predicting long-term prognosis in patients with internal carotid artery occlusion. Neurosurgery 1993: 32: 912–918.

    Article  CAS  PubMed  Google Scholar 

  • Kuschinsky W, Suda S, Bunger R, Sokoloff L. The influence of L-norepinephrine on the local coupling between brain metabolism and blood flow. In: Cerebral Blood Flow: Effects of Nerves and Neurrotransmitters, Heistad DD, Marcus ML (eds). New York: Elsevier/North-Holland 1982: 169–176.

    Google Scholar 

  • Lafferty JJ, Keykhah MM, Shapiro HM, et al. Cerebral hy-pometabolism obtained with deep pentobarbital anesthesia and hypothermia (30° C). Anesthesiology 1978: 49: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Lantos J, Temes G, Torok B. Changes during ischaemia in extracellular potassium ion concentration of the brain under nitrous oxide or hexobarbital-sodium anesthesia and moderate hypothermia. Acta Physiol Scand 1986: 67: 141–153.

    CAS  Google Scholar 

  • Larsen B, Skinhøj E, Soh K, Endo H, Lassen NA. The pattern of cortical activity provoked by listening and speech revealed by rCBF measurements. Acta Neurol Scnad 1977: 56 (suppl 64): 268–269.

    Google Scholar 

  • Larsen FS, Olsen KS, Hansen BA, et al. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke 1994: 25: 1985–1988.

    Article  CAS  PubMed  Google Scholar 

  • Larrue V, Celsis P, Bès A, Marc-Vergnes JP. The functional anatomy of attention in humans: Cerebral blood flow changes induced by reading, naming, and the Stroop effect. J Cereb Blood Flow Metab. 1994: 14: 958–962.

    Article  CAS  PubMed  Google Scholar 

  • Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev 1959: 39: 183–238.

    CAS  PubMed  Google Scholar 

  • Lassen NA, Feinberg I, Lane MH. Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia. J clin Invest 1960: 39: 491–500.

    Article  CAS  PubMed  Google Scholar 

  • Lassen NA. Brain extracellular pH: The main factor controlling cerebral blood flow (editorial). Scand J clin Lab Invest. 1968: 22: 247–249

    Article  CAS  PubMed  Google Scholar 

  • Lassen NA. Control of cerebral circulation in health and disease. Circ Res 1974: 34: 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Lenzi GL, Frackowiak RSJ, Jones T. Cerebral oxygen metabolism and blood flow in human cerebral ischaemic infarction. J Cereb Blood Flow Metab 1982: 2: 321–335

    Article  CAS  PubMed  Google Scholar 

  • Levene MI, Shortland D, Gibson N, Evans DH. Carbon dioxide reactivity of the cerebral circulation in extremely premature infants: Effects of postnatal age and indomethacin. Pediatr Res 1988: 24: 175–179

    Article  CAS  PubMed  Google Scholar 

  • Lluch S, Reimann C, Glick G. Evidence for a direct effect of adrenergic drugs on the cerebral vascular bed of the unan-esthetized goat. Stroke 1973: 4: 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Lluch S, Conde MV, Diéguez G et al. Evidence for the direct effect of vasopressin on human and goat cerebral arteries. J Pharmacol Exp Ther 1984: 228: 749–755

    CAS  PubMed  Google Scholar 

  • Lundberg N, Kjällquist A, Bien C. Reduction of increased intracranial pressure by hyperventilation. Acta Psychiat neurol Scand 1959: 34 (suppl 139).

    Google Scholar 

  • Lübbers DW. Quantitative measurement and describtion of oxygen supply to the tissue. In: Jöbsis FF (ed) Oxygen and Physiological Function. Dallas: Professional Information Library, 1977: pp 254–276

    Google Scholar 

  • MacKenzie ET, McCulloch J, O’Keane M et al. Cerebral circulation and norepinephrine: Relevance of the blood-brain barrier. Am J Physiol 1976: 231: 483-

    CAS  PubMed  Google Scholar 

  • MacKenzie ET, McGeorge AD, Graham DT et al. Effects of increasing arterial pressure on cerebral blood flow in the baboon, influence of the sympathetic nervous system. Phlügers Arch Eur J Physiol 1979: 378: 189–195.

    Article  CAS  Google Scholar 

  • Madsen PL, Holm S, Vorstrup S, et al. Human regional cerebral blood flow during rapid-eye-movement sleep. J Cereb Blood Flow Metab 1991: 11: 502–507

    Article  CAS  PubMed  Google Scholar 

  • Madsen PL, Schmidt JF, Holm S, et al. Mental stress and cognitive mental performance do not increase the overall level of cerebral O2 uptake in humans. J Appl Physiol 1992: 73: 420–426.

    CAS  PubMed  Google Scholar 

  • Madsen PL, Holm S, Herning M, Lassen NA. Average blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety-Schmidt technique. J Cereb Blood Flow Metab 1993: 13: 646–655.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Tommasono C, Shapiro HM et al. Local cerebral blood flow and glucose utilization during isoflurane anaesthesia in the rat. Anesthesiology 1986: 65: 144–151.

    Article  CAS  PubMed  Google Scholar 

  • Mahony PJ, Panerai RB, Deverson ST et al. Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation. Stroke 2000: 31: 476–480.

    Article  CAS  PubMed  Google Scholar 

  • Martin WRW, Raichle ME. Cerebral blood flow and metabolism in cerebral hemisphere infarction. Ann Neurol 1983: 14: 168–176

    Article  CAS  PubMed  Google Scholar 

  • McHenry LC, Slocum HC, Bivens HE, et al. Hyperventilation in awake and anesthetized man. Arch Neurol 1965: 12: 270–277

    Article  PubMed  Google Scholar 

  • McllWain H, Poll JD. Adenosine in cerebral homeostatic role: appraisal through actions of homocysteine, colchicine and dipyridamole. J Neurobiol 1986: 17: 39–49.

    Article  Google Scholar 

  • Malmlund HO, LyingTunell U, Bohmer G. The effect of ventricular-atrial shunting on cerebral oxygen consumption in patients with dementia. Europ Neurol 1972: 6: 340–345.

    Article  CAS  Google Scholar 

  • Mangold R, Sokoloff L, Conner E, et al. The effects of sleep and lack of sleep on the cerebral circulation and metabolism of normal young men. J clin Invest 1955: 34: 1092–1100.

    Article  CAS  PubMed  Google Scholar 

  • Marion DW, Bouma GJ. The use of stable xenon-enhanced computed tomographic studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsivity caused by a severe head injury. Neurosurgery 1991: 29: 869–873

    Article  CAS  PubMed  Google Scholar 

  • Marshall SB, Owens JC, Swan H. Temporary circulatory occlusion to the brain of the hypothermic dog. Arch Surg 1956: 72: 98–106.

    Article  CAS  Google Scholar 

  • Martins AN, Doyle TF, Newby N. PCO2 and rate of formation of of cerebrospinal fluid in the monkey. Am J Physiol 1976: 231: 127–131.

    CAS  PubMed  Google Scholar 

  • Mayhan WG, Heistad DD. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res 1986a: 59: 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Mayhan WG, Faraci FM, Heistad DD. Disruption of the blood-brain barrier in cerebrum and brain stem during acute hypertension. Am J Physiol 1986b: 251: 1171–1175.

    Google Scholar 

  • Mc Culloch J. Role of dopamine in interactions among cerebral function, metabolism, and blood flow. In: Neurotransmitters and the Cerebral Circulation, MacKenzie ET, Seylas J, Bès A (eds), New York, Raven Press, L.E.R.S. monograph series; 1984: vol 2, pp 137–155

    Google Scholar 

  • McKissock W, Paine KWE, Walsh LS. The value of hypothermia in the surgical treatment of ruptured intracranial aneurysms. J Neurosurg 1960: 17: 700–707.

    Article  Google Scholar 

  • McKrell TN, Stone HH, Wechsler RL. Effect of drug induced hypotension on cerebral circulation in man. Surg Forum 1955: 5: 730–736.

    Google Scholar 

  • Mchedlishvili GI, Mitagcaria NP, Ormotsadze LG. Vascular mechanisms controlling a constant blood supply to the brain (“autoregulation”). Stroke 1973. 4: 742–750

    Article  CAS  PubMed  Google Scholar 

  • Mellergård P, Nordström C-H. Intracerebral temperature in neurosurgical patients. Neurosurgery 1991: 28: 709–713

    Article  PubMed  Google Scholar 

  • Meno JR, Ngai AC, Winn HR. Changes in pial arteriolar diameter and CSF adenosine concentrations during hypoxia. J Cereb Blood Flow Metab 1993: 13: 214–220.

    Article  CAS  PubMed  Google Scholar 

  • Messeter K, Nordström C-H, Sundbärg G, et al. Cerebral hemodynamics in patients with severe head trauma. J Neurosurg 1986: 64: 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Messmer K, Gornandt L, Jesch F, et al. Oxygen transport and tissue oxygenation during hemodilution with dextran. Adv Exp Med Biol 1973: 37: 669–680.

    Article  CAS  PubMed  Google Scholar 

  • Michenfelder JD, Theye RA. Hypothermia: Effect on canine brain and whole-body metabolism. Anesthesiology 1968: 29:1107–1112.

    Article  CAS  PubMed  Google Scholar 

  • Michenfelder JD, VanDyke RA, Theye RA. The effects of anesthetic agents and techniques on canine cerebral ATP and lactate levels. Anesthesiology 1970: 33: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Michenfelder JD, Theye RA. The effects of anaesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 1970: 33: 430–439.

    Article  CAS  PubMed  Google Scholar 

  • Michenfelder JD, Sundt TM. The effect of paCO2 on the metabolism of ischaemic brain in squirrel monkeys. Anesthesiology 1973: 38: 445–453

    Article  CAS  PubMed  Google Scholar 

  • Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 1974: 41: 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Michenfelder JD. The in vivo effect of massive concentrations of anesthetics on canine cerebral metabolism. In: Fink BR, (ed), Molecular mechanisms of anesthesia, progress in anesthesiology. Raven Press, New York, 1975: 1: 537–543.

    Google Scholar 

  • Michenfelder JD, Milde JH. Failure of prolonged hypocapnia, hypothermia or hypertension to favourably alter acute stroke in primates. Stroke 1977: 8: 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Michenfelder JD, Milde JH. The relationship among canine brain temperature, metabolism, and function during hypocapnia. Anesthesiology 1991: 75: 130–136

    Article  CAS  PubMed  Google Scholar 

  • Mickel HS, Vaishnav YN, Kempski O, et al. Breathing 100% oxygen after global brain ischemia in Mongolian Gerbils results in increased lipid peroxidation and increased mortality. Stroke 1987: 18: 426–430.

    Article  CAS  PubMed  Google Scholar 

  • Milde LN. Points of view — Clinical use of mild hypothermia for brain protection: A dream revisited. J Neurosurg Anes-thesiol 1992:4:211–215.

    Article  CAS  Google Scholar 

  • Miller JD, Stanek AE, Langfitt TW Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. In: Meyer JS, Schade JD (eds). Progress in Brain Research. Amsterdam: Elsevier, 1971: 411–432

    Google Scholar 

  • Mirro R, Busija DW, Armstead WM, Leffler CW Histamine dilates the pial arterioles of newborn pigs through prostanoid production. Am J Physiol 1988: 23: H1023–H1026

    Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA. The discovery of nitric oxide as endogenous nitrovasodilator. Hypertension 1988: 12: 365–372

    Article  CAS  PubMed  Google Scholar 

  • Moreno MJ, Conde MV, De la Luz, Fraile M, et al. Lesion of the dorsal raphe nucleus induces supersensitivity to serotonin in isolated cat middle cerebral artery. Brain Res 1991: 538: 324–328.

    Article  CAS  PubMed  Google Scholar 

  • Morgan P, Ward B. Hyperventilation and changes in the electroencephalogram and electroretinogram. Neurology 1970: 20: 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto Y, Mathru M, Martinez-Tica J, Zornow MH. Effects of profound anemia on brain tissue oxygen tension, carbon dioxide tension, and pH in rabbits. J Neurosurg Anesthe-siol 2001: 13:33–39.

    Article  CAS  Google Scholar 

  • Moskowitz MA, Wei EP, Saito K et al. Trigeminalectomy modifies pial arteriolar reponses to hypertension or norepinephrine. Am J Physiol 1988: 255: H1–H6

    CAS  PubMed  Google Scholar 

  • Muizelaar JP, van Der Poel HG, Li Z, et al. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg 1988: 69: 923–927.

    Article  CAS  PubMed  Google Scholar 

  • Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 1991: 75: 731–739

    Article  CAS  PubMed  Google Scholar 

  • Murkin JM, Farrar JK, Tweed A, et al. Cerebral autoregulation and flow/metabolism coupling during cardio-pulmonary bypass: The influence of PaCO2. Anesth Analg 1987: 66: 825–832.

    CAS  PubMed  Google Scholar 

  • Murphy VA, Johanson CE. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries. J Cereb Blood Flow Metab 1985: 5: 401–412.

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Maruya H, Yuya H, et al. Can PET data differentiate Alzheimer’s disease from vascular dementia? Ann N Y Acad Sci 2000: 903: 252–261.

    Article  CAS  PubMed  Google Scholar 

  • Najarian T, Marrache AM, Dumont I, et al. Proponged hyper-capnia-evoked cerebral hyperemia via K(+) channel- and prostaglandin E (2)-dependent endothelial nitric oxide sy-nathase induction. Circ Res 2000: 87: 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  • Nakai M. Contractile effects of perivascularly applied vasopressin on the pial artery of the cat brain. J Physiol (Lond) 1987: 387: 441–452

    CAS  Google Scholar 

  • Neill WA, Hattenhauer M. Impairment of myocardial O2 supply due to hyperventilation. Circulation 1975: 52: 854–858.

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ, Czosnyka M, Pickard JD, et al. Experimental aspects of cerebrospinal hemodynamics: The relationship between blood flow velocity waveform and cerebral autoregulation. Neurosurgery 1992: 31: 705–710.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto EM, Yao L, Yonas H, Darby JM. Compartmentation of whole brain blood flow and oxygen and glucose metabolism in monkeys. J Neurosurg Anesthesiol 1994: 6: 170–174.

    CAS  PubMed  Google Scholar 

  • Nilsson L, Busto R. Controlled hyperventilation and its effect on brain energy and acid-base parameters. Acta Anesthesiol Scand 1973: 17: 243–252

    Article  CAS  Google Scholar 

  • Nordström C-H, Rehncrona S. Reduction of cerebral blood flow and oxygen consumption with a combination of barbiturate anesthesia and induced hypothermia in the rat. Acta Anaesthesiol Scand 1979: 22: 7–12.

    Article  Google Scholar 

  • North JB, Reilly PL, Gorman D, et al. The effect of hypoxia on intracranial pressure and cerebral blood flow. In Intracranial Pressure VIII. Avezaat CJJ, van Eijndhoven JHM, Maas IAR, Tans JThJ (eds). Springer Verlag 1993: 238–243.

    Chapter  Google Scholar 

  • Norwood WE, Norwood CR. Influence of hypothermia on intracellular pH during anoxia. Am J Physiol 1982: 243: 62–65.

    Google Scholar 

  • Nørregaard TV, Moskowitz MA, Substance P And the sensory innervation of intracranial and extracranial feline cephalic arteries. Implications for vascular pain mechanisms in man. Brain 1985: 108: 517–533

    Article  PubMed  Google Scholar 

  • Oberdorster G, Lang R, Zimmer R. Direct effect of alpha- and betasympathomimetic amines on cerebral circulation of the dog. Pflügers Arch 1973: 340: 145–160.

    Article  CAS  PubMed  Google Scholar 

  • Obrist WD, Langfitt TW, Jaggi JL, et al. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg 1984: 61: 241–253.

    Article  CAS  PubMed  Google Scholar 

  • Okuda C, Saito A, Miyazaki M, Kuriyama K. Alteration of the turnover of dopamine and 5-hydroxtryptamine in rat brain associated with hypothermia. Pharmacol Biochem Behav 1986: 25: 79–83.

    Article  Google Scholar 

  • Olah L, Franke C, Schwindt W, Hoehn M. CO2 reactivity measured by perfusion MRI during transient focal cerebral ischemia in rats. Stroke 2000: 1: 2236–2244.

    Article  Google Scholar 

  • Olesen J. Contralateral focal increase of cerebral blood flow in man during arm work. Brain 1971: 94: 635–646.

    Article  CAS  PubMed  Google Scholar 

  • Olesen J, Paulson OB, Lassen NA. Regional cerebral blood flow in man determined by the initial slope of the clearance of the intra-arterially injected 133Xe. Stroke 1971: 2: 519–540.

    Article  CAS  PubMed  Google Scholar 

  • Olesen J. The effect of intracarotid epinephrine, norepinephrine and angiotensin on regional cerebral blood flow in man. Neurology (Minneap.) 1972: 22: 978–987.

    Article  CAS  Google Scholar 

  • Olesen S-R, Chrone C. Rapid increase in blood-brain barrier permeability during severe conductance of cerebral microvascular walls. Acta Physiol Scand 1986: 127: 233–241

    Article  CAS  PubMed  Google Scholar 

  • Onadera H, Sata G, Kogure K. GABA and benzodiazepine receptors in the gerbil brain after transient ischemia: demonstration by quantitative-receptor antoradiography. J Cereb Blood Flow Metab 1987: 7: 82–88

    Article  Google Scholar 

  • Onesti ST, Strauss RC, Mayol B, et al. The effects of norepinephrine depletion on cerebral blood flow in the rat. Brain Res 1989: 477: 378–381

    Article  CAS  PubMed  Google Scholar 

  • Otha K, Gotoh F, Shimazu K, et al. Locus coeruleus stimulation exerts different influences on the dynamic changes of cerebral pial and intraparenchymal vessels. Neurol Res 1991: 13:164–167

    Google Scholar 

  • Overgaard J and Tweed WA. Cerebral circulation after head injury. Part I: Cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 1974: 41: 531–541.

    Article  CAS  PubMed  Google Scholar 

  • Owen OE, Morgan AP, Kemp HG, et al. Brain metabolism during fasting. J Clin Invest 1967: 46: 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthetize nitric oxide from L-arginine. Nature 1988: 333: 664–666

    Article  CAS  PubMed  Google Scholar 

  • Palvölgyi R. Regional cerebral blood flow in patients with intracranial tumors. J Neurosurg 1969: 31: 149–163.

    Article  PubMed  Google Scholar 

  • Pantano P, Baron JC, Samson Y, et al. Crossed cerebellar di-aschisis: Further studies. Brain 1986: 109: 677–694

    Article  PubMed  Google Scholar 

  • Park TS, van Wylen DGL, Rubio R, Berne RM. Brain interstitial adenosine and sagital sinus blood flow during systemic hypotension in piglet. J Cereb Blood Flow Metab 1988: 8: 822–828

    Article  CAS  PubMed  Google Scholar 

  • Paulson OB. Regional cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery. Neurology 1970: 20: 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Paulson OB, Olesen J, Christensen MS. Restoration of autoregulation of cerebral blood flow by hypocapnia. Neurology (Minneap.) 1972: 22: 286–293.

    Article  CAS  Google Scholar 

  • Paulson OB, Strandgaard S, Edvinsson L. Cerebral Autoregulation. Cerebrovascular and Brain Metabolism Reviews 1990: 2: 161–192.

    CAS  PubMed  Google Scholar 

  • Payen JF, Briot E, Tropres I, et al. Regional cerebral blood volume response to hypocapnia using susceptibility constrast MRI. NMR Bioned 2000: 13: 384–391.

    Article  CAS  Google Scholar 

  • Pelligrino DA; Koenig HM, Albrecht RE Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat. J Cereb Blood Flow Metab 1993: 13: 80–87.

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, De Long RE. An involvement of adenosine in cerebral blood flow regulation during hypercapnia. Gen Pharmac 1987: 18: 133–139.

    Article  CAS  Google Scholar 

  • Phleps ME, Grubb RL, Ter-Pogosian MM. Correlation between PaCO2 and regional cerebral blood volume by x-ray fluorescence. J Appl Physiol 1973: 35: 274–280

    Google Scholar 

  • Piechnik SK, Xang X, Czosnyka M, et al. The continuous assessment of cerebrovascular reactivity: a validation of the method in healthy volunteers. Anesth Analg 1999: 89: 944–949.

    CAS  PubMed  Google Scholar 

  • Pistolese GR, Faraglia V, Agnoli A, et al. Cerebral hemispheric “counter-steal” phenomenon during hyperventilation in cerebrovascular diseases. Stroke 1972: 3: 456–461.

    Article  CAS  PubMed  Google Scholar 

  • Plum F, Siesjö BK. Recent advances in CSF physiology. Anesthesiology 1975: 42: 708–730.

    Article  CAS  PubMed  Google Scholar 

  • Pollard V, Prough DS, Deyo DJ, et al. Cerebral blood flow during experimental endotoxemia in volunteers. Crit Care Med 1997: 25: 1700–1706.

    Article  CAS  PubMed  Google Scholar 

  • Posner JB, Plum F. The toxic effect of carbon dioxide and acetazolamide in hepatic encephalopathy. J Clin Invest 1960: 39: 1246–1258.

    Article  CAS  PubMed  Google Scholar 

  • Powers WJ. Cerebral hemodynamics in ischaemic cerebrovascular disease. Ann Neurol 1991: 29: 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Proctor HJ, Carins C, Fillipo D, et al. Brain metabolism during increased intracranial pressure as assessed by niroscopy. Surgery 1984: 96: 273–278

    CAS  PubMed  Google Scholar 

  • Pryds O, Greisen G. Preservation of single flash visual evoked potentials at very low cerebral oxygen delivery in sick newborn, preterm infants. Pediatr Neurol 1990: 6: 151–158

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, Posner JB, Plum F. Cerebral blood flow during and after hyperventilation. Arch Neurol 1970: 23: 394–403

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, Plum F. Hyperventilation and cerebral blood flow. Stroke 1972: 3: 566–575.

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, Hartman BK, Eichking JO, Sharpe LG. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Nat Acad Sci USA 1975: 72: 3726–3730

    Article  CAS  PubMed  Google Scholar 

  • Rapela CE, Green HD, Denison AB. Baroreceptor reflexes and autoregulation of cerebral blood flow in the dog. Circ Res 1967: 21: 559–568.

    Article  CAS  PubMed  Google Scholar 

  • Redies C, Hoffer LJ, Beil C, et al. Generalized decrease in brain glucose metabolism during fasting in human studied by PET. Am J Physiol 1989: 256: E805–E810.

    CAS  PubMed  Google Scholar 

  • Reivich M. Arterial PCO2 and cerebral hemodynamics. Am J Physiol 1964: 206: 25–35

    CAS  PubMed  Google Scholar 

  • Reivich M, Cohen PJ, Greenbaum L. Alterations in the electroencephalogram of awake man produced by hyperventilation: Effects of 100% oxygen at 3 atmospheres (absolute) pressure. Neurology 1966: 16: 304.

    Google Scholar 

  • Rengachery SS, Roth DA, Andrew NW, Mark VH. Alteration of the blood-brain barrier with hyperventilation. 1967: 614–617

    Google Scholar 

  • Reutens DC, McHugh MD, Toussaint P-J, et al. L-arginine infusion increases basal but not activated cerebral blood flow in humans. J Cereb Blood Flow Metab 1997: 17: 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Reynier-Rebuffel A, Aubineau P, Issertial O, Seylaz J. Nonuni-formity of CBF response to NE- or ANG II-induced hypertension in rabbits. Am J Physiol 1987: 253: H47–H57.

    CAS  PubMed  Google Scholar 

  • Ridenour TR, Warner DS, Todd MM, McAllister AC. Mild hypothermia reduces infarct size resulting from temporary but not permanent focal ischemia in rats. Stroke 1992: 23: 733–738

    Article  CAS  PubMed  Google Scholar 

  • Risberg J. Regional cerebral blood flow measurements by 133Xenon inhalation: Methodology and applications in neuropsychology and psychiatry. Brain and Language 1980: 9: 9–34

    Article  CAS  PubMed  Google Scholar 

  • Rosner MJ. Cerebral perfusion pressure: Link between intracranial pressure and systemic circulation. In: Wood JH (ed) Cerebral Blood Flow, Physiological and Clinical Aspects 1987: 425–448.

    Google Scholar 

  • Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol 1954: 179: 85–88.

    CAS  PubMed  Google Scholar 

  • Rossi GT, Britt RH. Effects of hypothermia on the cat brainstem auditory evoked response. Electroencephalogr Clin Neurophysiol 1984: 57: 143–155.

    Article  CAS  PubMed  Google Scholar 

  • Ruskell GL, Simons T. Trigeminal nerve pathways to the cerebral arteries in monkeys. J Anat 1987: 155: 23–37

    CAS  PubMed  Google Scholar 

  • Russell D, Dybevold S, Kjartansson O, et al. Cerebral vasoreac-tivity and blood flow before and 3 months after carotid endarterectomy. Stroke 1990: 21: 1029–1032.

    Article  CAS  PubMed  Google Scholar 

  • Sadoshima S, Fujii K, Yao H, et al. Regional cerebral blood flow autoregulation in normotensive and spontaneously hypertensive rats — effects of sympathetic denervation. Stroke 1986: 17: 981–984.

    Article  CAS  PubMed  Google Scholar 

  • Saito DE, Moskowitz MA. Contributions from the upper cervical dorsal roots and trigeminal ganglia to the feline circle of Willis. Stroke 1989: 20: 524–526

    Article  CAS  PubMed  Google Scholar 

  • Sakas DE, Moskowitz MA, Wei EP, et al. Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci USA 1989: 86: 1401–1405

    Article  CAS  PubMed  Google Scholar 

  • Salanga VD, Waltz AG. Regional cerebral blood flow during stimulation of seventh cranial nerve. Stroke 1973: 4: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Samento A, Borges N, Lima D. Influence of electrical stimulation of locus coeruleus on the rat blood-brain barrier permeability to sodium fluorescein. Acta Neurochir (Wien) 1994: 127: 215–219.

    Article  Google Scholar 

  • Samra SK, Turk P, Arens JF. Effect of hypocapnia on local cerebral glucose utilization in rats. Anesthesiology 1989: 70: 523–526.

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Pawlik G, Heiss WD. Comparative studies of regional CNS blood flow autoregulation and responses to CO2 in the cat. Effects of altering arterial blood pressure and PaCO2 on rCBF of cerebrum, cerebellum, and the spinal cord. Stroke 1984: 15: 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Schienberg P, Stead EA. The cerebral blood flow in male subjects as measured by the nitrous oxide technique: Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance with observations on the effect of tilting and anxiety. J Clin Invest 1949: 28: 1163.

    Article  Google Scholar 

  • Schmidt JF, Waldemar G, Vorstrup S, et al. Computerized analysis of cerebral blood flow autoregulation in humans: validation of a method for pharmacologic studies. J Cardiovasc Pharmacol 1990: 15: 983–988

    Article  CAS  PubMed  Google Scholar 

  • Schubert A. Points of view — Should mild hypothermia be routinely used in human cerebral protection? The flip side. J Neurosurg Anesthesiology 1992: 4: 216–220

    Article  CAS  Google Scholar 

  • Schwartz JL, Pollard H, Quach TT. Histamine as a neurotransmitter in mammilian brain: neurochemical evidence. J Neurochem 1980: 35: 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Sciotti VM, van Wylen DGL. Increases in interstitial adenosine and cerebral blood flow with inhibition of adenoisne kinase and adenosine deaminase. J Cereb Blood Flow Metab 1993: 13: 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Sedzimir CB. Therapeutic hypothermia in cases of head injury. J Neurosurg 1959: 16: 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Sercombe R, Verrechia C, Oudart N, et al. Pial artery response to norepinephrine potentiated by endothelium removal. J Cereb Blood Flow Metab 1985: 5: 312–317.

    Article  CAS  PubMed  Google Scholar 

  • Serteser M, Ozben T, Gumuslu S, et al. Biochemical evidence of crossed cerebellar diaschisis in terms of nitric oxide indicators and lipid peroxidation products in rats during focal cerebral ischemia. Acta Neurol Scand 2001: 103: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Severinghaus JW, Cotev S. Carbonic acidosis and cerebral vasodilation after diamox. Scand J Clin Lab Invest (suppl) 1968:102: VII: I:E.

    Google Scholar 

  • Shapiro HM, Wyte SR, Loeser J. Barbiturate augmented hypothermia for reduction of persistant intracranial hypertension J Neurosurg 1974: 40: 90–100.

    Article  CAS  PubMed  Google Scholar 

  • Shenkin HA, Hafkenschiel JH, Kety SS. Effects of sympathectomy on the cerebral circulation of hypertensive patients. Arch Surg 1950: 61: 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Siesjø BK, Ingvar M, Pelligrino D. Regional differences in vascular autoregulation in the rat brain in severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab 1983: 3: 478–485.

    Article  PubMed  Google Scholar 

  • Skinhøj E, Paulson OB. Carbon dioxide and cerebral circulatory control. Arch Neurol 1969: 20: 249–252

    Article  PubMed  Google Scholar 

  • Skinhøj E, Strandgaard S. Pathogenesis of hypertensive encephalopathy. Lancet 1973: i: 461–462.

    Article  Google Scholar 

  • Slocum HC, Hayes HJ, Laezman BL. Ventilator technique of anaesthesia for neurosurgery. Anesthesiology 1961: 22: 143–145.

    Article  Google Scholar 

  • Smielewski P, Czosnyka M, Kirkpatrick P, et al. Assessment of cerebral autoregulation using carotid artery compression. Stroke 1996: 27: 2197–2203.

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L, Perland S, Konetsky C, Kety SS. The effect of D-lysergic acid diethylamide on cerebral circulation and overall metabolism. Ann NY Acad Sci 1957: 66: 468–477

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L, Kennedy C, Adachi K, et al. Effects of inhibition of nitric oxide synthase on resting local cerebral blood flow and on changes induced by hypercapnia or local functional activity. In: Pharmacology of Cerebral Ischemia. Kriegstein J, Oberpichler-Schwenk H (eds). Stuttgart, Wissenschaftliche Verlagsgesellschaft 1992, pp 371–381.

    Google Scholar 

  • Soloway M, Nadel W, Albin MS, White RJ. The effect of hyperventilation on subsequent cerebral infarction. Anesthesiology 1968: 29: 975–980.

    Article  CAS  PubMed  Google Scholar 

  • Soloway M, Moriarty G, Fraser JG, White RJ. Effect of delayed hyperventilation on experimental cerebral infarction. Neurology 1971: 21: 479–485.

    Article  CAS  PubMed  Google Scholar 

  • Speth RC, Harik SI. Angiotensin II receptor binding sites in brain microvessels. Proc Natl Sci 1985: 82: 6340–6343.

    Article  CAS  Google Scholar 

  • Steen PA, Milde JH, Michenfelder JD. No barbiturate protection in a dog model of complete cerebral ischaemia Ann Neurol 1979: 5: 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Steinmeier R, Bauhof C, Hubner U, et al. Slow rhytmic oscillations of blood pressure, intracranial pressure, microcirculation, and cerebral oxygenation: dynamic interaction and time course in humans. Stroke 1996: 27: 2236–2243.

    Article  CAS  PubMed  Google Scholar 

  • Stephan H, Weyland A, Kazmaier S, et al. Acid-base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. Br J Anaesth 1992: 69: 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Strandgaard S, Olesen J, Skinhøj E, Lassen NA. Autoregulation of brain circulation in severe hypertension. Br Med J 1973: 1: 507–510.

    Article  CAS  PubMed  Google Scholar 

  • Strandgaard S, McKenzie ET, Jones JV, Harper AM. Studies on cerebral blood flow following breakthrough of autoregulation. Blood flow and metabolism in the brain, Harper M, Jennett B, Miller D, Rowan J (eds). Churchill Livingstone, Edinburgh, London, New York 1975a: 5.15.

    Google Scholar 

  • Strandgaard S, Jones JV, MacKenzie ET, Harper AM. Upper-limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res 1975b: 37: 164–167.

    Article  CAS  PubMed  Google Scholar 

  • Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of profound antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation 1976: 53: 720–727.

    Article  CAS  PubMed  Google Scholar 

  • Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke 1984: 15: 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Swan H, Schätte C. Antimetabolic extract from the brain of the hibernating ground squirrel Citellus tridecemlineatus. Science 1977: 195: 84–85.

    Article  CAS  PubMed  Google Scholar 

  • Sutton JR, Lassen N. Pathophysiology of acute mountain sickness and high altitude pulmonary edema: an hypothesis. Bull Eur Physiopathol Respir 1979: 15: 1045–1052

    CAS  PubMed  Google Scholar 

  • Sutton LN, McLaughlin AC, Kemp W, et al. Effects of increased ICP on brain phosphocreatine and lactate determined by simultaneous 1H and 31P NMR spectroscopy. J Neurosurg 1987: 67: 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R, Nitsch C, Fujiwara K, Klatzo I. Regional changes in cerebral blood flow and blood-brain barrier permeability during epileptiform seizures and in acute hypertension in rabbits. J Cereb Blood Flow Metab 1984: 4: 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Satoh S-I, Kimura M, et al. Effects of vasopressin and oxytocin on canine cerebral circulation in vivo. J Neurosurg 1992: 77: 424–431

    Article  CAS  PubMed  Google Scholar 

  • Symon L. Regional cerebrovascular responses to acute ischaemia in normocapnia and hypercapnia. J Neurol Neurosurg Psychiat 1970: 33: 756–762

    Article  CAS  PubMed  Google Scholar 

  • Symon L, Held K, Dorsch MWC. On the myogenic nature of the autoregulatory mechanism in the cerebral circulation. Europ Neurol 1972: 6: 11–18.

    Article  CAS  Google Scholar 

  • Symon L, Held K, Dorsch NWC. A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 1973: 4: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Symon L, Branston NM, Strong J. Autoregulation in acute focal ischemia. An experimental study. Stroke 1976: 7: 547–554

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SC. Theoretical considerations on the potential hazards of hyperventilation during anesthesia. Acta Anaes-theiol Scand 1978: suppl 67: 106–110.

    CAS  Google Scholar 

  • Tabaddor K, Gardner TJ, Walker AE. Cerebral circulation and metabolism at deep hypothermia. Neurology (Minneap.) 1972: 22: 1065–1070.

    Article  CAS  Google Scholar 

  • Taft WC, Yang K, Dixon CE, et al. Hypothermia attenuates the loss of hippocampal microtubule-associated protein 2 (MAP2) following traumatic brain injury. J Cereb Blood Flow Metab 1993.13: 796–802.

    Article  CAS  PubMed  Google Scholar 

  • Takano T, Nagatsuka K, Ohnishi Y, et al. Vascular response to carbon dioxide in areas with and without diaschisis in patients with small, deep hemispheric infarction. Stroke 1988: 19: 840–845

    Article  CAS  PubMed  Google Scholar 

  • Terry HR, Daw EF, Michenfelder JD. Hypothermia by extracorporeal circulation for neurosurgery: an anesthetic technique. Anesth Analg 1962: 41: 241–248.

    Article  PubMed  Google Scholar 

  • Thomas DJ, du Boulay GH, Marshall J, et al. Effect of hematocrit on cerebral blood flow in man. Lancet 1977: 2: 941–943.

    Article  CAS  PubMed  Google Scholar 

  • Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke 1995: 26: 1014–1019.

    Article  CAS  PubMed  Google Scholar 

  • Todd MM, Weeks JB, Warner DS. The influence of intravascular volume expansion on cerebral blood flow and blood volume in normal rats. Anesthesiology 1994: 78: 945–953.

    Article  Google Scholar 

  • Tominaga S, Strandgaard S, Eumera K, et al. Cerebrovascular CO2 reactivity in normotensive and hypertensive man. Stroke 1976: 7: 507–510.

    Article  CAS  PubMed  Google Scholar 

  • Tamaki K, Saku Y, Ogata J. Effects of angiotensin and atrial natriuretic peptide on the cerebral circulation. J Cereb Blood Flow Metab 1992: 12: 318–325

    Article  CAS  PubMed  Google Scholar 

  • Tranmer BI, Keller TS, Kindt GW, Archer D. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg 1992: 77: 253–259

    Article  CAS  PubMed  Google Scholar 

  • Tuor UI, Edvinsson L, McCulloch J. Catecholamines and the relationship between cerebral blood flow and glucose use. Am Physiol Soc 1986: 251: H824–833.

    CAS  Google Scholar 

  • Uchida E, Bohr DF, Hoobler SW. A method for studying isolated resistance vessels from rabbit mesentery and brain and their responses to drugs. Circ Res 1967: 21: 525–536

    Article  CAS  PubMed  Google Scholar 

  • Uihlein A, Terry HR, Payne WS, Kirklin JW Operations on intracranial aneurysms with induced hypothermia below 15 C and total circulatory arrest. J Neurosurg 1962: 19: 237–239.

    Article  CAS  PubMed  Google Scholar 

  • Uihlein A, MacCarty CS, Michenfelder JD, et al. Deep hypothermia and surgical treatment of intracranial aneurysms. Am Med Ass 1966: 195: 639–641.

    Article  CAS  Google Scholar 

  • Underwood MD, Bakalian MJ, Arango V, et al. Regulation of cortical blood flow by the dorsal raphe nucleus: Topographic organization of cerebrovascular regulatory regions. J Cereb Blood Flow Metab 1992: 12: 664–673.

    Article  CAS  PubMed  Google Scholar 

  • Vanhoutte PM, Verbeuren TJ, Webb RC. Local modulation of the adrenergic neuroeffector interaction in the blood vessel wall. Physiol Rev 1981: 61: 151–247.

    CAS  PubMed  Google Scholar 

  • Vanicky I, Marsala M, Murár J, Marsala J. Prolonged postishemic hyperventilation reduces acute neuronal damage after 15 min of cardiac arrest in the dog. Neuroscience Lett 1992: 135: 167–170.

    Article  CAS  Google Scholar 

  • Van Wylen DGL, Park TS, Rubio R et al. Brain dialysate adenosine concentration during cerebral autoregulation in the adult rat. Fed Proc 1987: 46: 354.

    Google Scholar 

  • Videen TO, Perlmutter JS, Herscovitch P, Raichle ME. Brain blood volume flow, and oxygen utilization with 15O radiotracers and positron emission tomography: Revised metabolic computations. J Cereb Blood Flow Metab 1987: 7:513–516

    Article  CAS  PubMed  Google Scholar 

  • Vinall PE, Simeone FA. Cerebral autoregulation: An in vitro study. Stroke 1981: 12: 640–642.

    Article  CAS  PubMed  Google Scholar 

  • Voldby B, Enevoldsen EM, Jensen FT. Regional CBF, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. J Neurosurg 1985: 62: 48–58.

    Article  CAS  PubMed  Google Scholar 

  • von Essen C, Zervas NT, Brown DR, et al. Local cerebral blood flow in the dog during intravenous infusion of dopamine. Surg Neurol 1980: 13: 181–188.

    Google Scholar 

  • von Essen C. Effects of dopamine on cerebral blood flow in the dog. Acta Neurol Scand 1974: 50: 39–52.

    Article  Google Scholar 

  • von Essen C. Effects of dopamine, noradrenaline and 5-hy-droxytryptamine on cerebral blood flow in the dog. J Pharm Pharmacol 1972: 24: G68

    Article  Google Scholar 

  • Vorstrup S. Tomographic cerebral blood flow measurements in patients with ischaemic cerebrovascular disease and evaluation of the vasodilatory capacity by the acetazo-lamide test. Acta Neurol Scand 1988: 114: 77: 1–48.

    CAS  Google Scholar 

  • Wagerle LC, Orr JA, Shirer HW, et al. Cerebrovascular response to acute decreases in arterial PO2. J Cereb Blood Flow Metab 1983: 3: 507–515

    Article  CAS  PubMed  Google Scholar 

  • Wagerle LC, Busija DW. Cholinergic mechanisms in the cerebral circulation of the newborn piglet: effect of inhibitors of arachidonic acid metabolism. Circ Res 1989: 64: 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  • Wahl M, Kuschinsky W. The dilating effect of histamine on pial arteries of cats and its mediation of H2 receptors. Circ Res 1979: 44: 161–165.

    Article  CAS  PubMed  Google Scholar 

  • Waldemar G, Schmidt JF, Andersen AR, et al. Angiotensin converting enzyme inhibition and cerebral blood flow autoregulation in normotensive and hypertensive man. J Hypertension 1989: 7: 229–235

    Article  CAS  Google Scholar 

  • Waldemar G, Hasselbalch SG, Andersen AR, et al. 99m-Tc-d,1-HMPAO and SPECT of the brain in normal aging. J Cereb Blood Flow Metab 1991: 11: 508–521

    Article  CAS  PubMed  Google Scholar 

  • Waldemar G, Schmidt JF, Delecluse F, et al. High resolution SPECT with (99mTc)-d,1-HMPAO in normal pressure hydrocephalus before and after shunt operation. J Neurol Neurosurg Psychiatry 1993: 56: 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Waldemar G, Bruhn P, Kristensen M, et al. Heterogeneity of neocortical cerebral blood flow deficits in dementia of the Alzheimer type: a (99mTc)-d.1-HMPAO SPECT study. J Neurol Neurosurg Psychiatry 1994: 57: 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Waltz AG, Yamaguchi T, Regli F. Regulatory responses of cerebral vasculatur after sympathetic denervation. Am J Physiol 1971: 221: 298–302

    CAS  PubMed  Google Scholar 

  • Wang Q, Paulson OB, Lassen NA. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioixide tension. J Cereb Blood Flow Metab 1992: 12: 947–953.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Pelligrino DA, Koenig HM, Albrecht RE The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to CO2 in vivo. J Cereb Blood Flow Metab 1994: 14: 944–951.

    Article  CAS  PubMed  Google Scholar 

  • Warner DS, Turner DM, Kassell NE Time-dependent effects of prolonged hypercapnia on cerebrovascular parameters in dogs: Acid-base chemistry. Stroke 1987: 18: 142–149.

    CAS  Google Scholar 

  • Wei EP, Ellis EF, Kontos HA. Role of prostagladins in pial arteriolar response to CO2 and hypoxia. Am J Physiol 1980: 238: H226–230

    CAS  PubMed  Google Scholar 

  • Wei EP, Kontos HA, Dietrich WD et al. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ Res 1981: 48: 95–103

    Article  CAS  PubMed  Google Scholar 

  • Wichser J, Kazemi H. CSF bicarbonate regulation in respiratory acidosis and alkalosis. J Appl Physiol 1975: 38: 504–512

    CAS  PubMed  Google Scholar 

  • Widder B, Kleiser B, Krapf H. Course of cerebrovascular reactivity in patients with carotid artery occlusions. Stroke 1994: 25: 1963–1967.

    Article  CAS  PubMed  Google Scholar 

  • White RJ, Albin MS, Verdura J, Locke GE. Differential extracorporal hypothermic perfusion of and circulatory arrest to the human brain. Med Res Engineering 1967: 6: 18–24.

    CAS  Google Scholar 

  • White RJ. Preservation of cerebral function during circulatory arrest and resuscitation: Hypothermic protective considerations. Resuscitation 1972: 1: 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Winn HR, Welsh JE, Rubio R, Berne RM. Brain adenosine production in the rat during sustained alteration in systemic blood pressure. Am J Physiol 1980: 239: H 636–641.

    Google Scholar 

  • Winn HR, Rubio R, Berne RM. The role of adenosine in the regulation of cerebral blood flow. J Cereb Blood Flow Metab 1981: 1: 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Winsö I. Cerebral blood flow at hyperventilation. The interrelation between oxygen and carbon dioxide tensions in the cerebrovascular response to hyperventilation in dogs. Elanders Boktruckeri aktiebolag, 1971: Göteborg

    Google Scholar 

  • Wollman SB, Orkim LR. Postoperative human reaction time and hypocapnia during anesthesia. Br J Anaesth 1968: 40: 920–927.

    Article  CAS  PubMed  Google Scholar 

  • Wong DF, Young D, Wilson PD, et al. Quantification of neuroreceptors in the living human brain. D2-like dopamine receptors: theory, validation, and changes during normal aging. J Cereb Blood Flow Metab 1997a: 17: 316–330.

    Article  CAS  PubMed  Google Scholar 

  • Wong DF, Young D, Wilson PD. Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J Cereb Blood Flow Metab 1997b: 17: 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Wood JH, Simeone FA, Fink EA, Golden MA. Hypervolemic hemodilution in experimental focal cerebral ischemia: Evaluations of cardiac output, regional cerebral blood flow, and ICP after intravascular volume expansion with low molecular weight dextran. J Neurosurg 1983: 59: 500–509

    Article  CAS  PubMed  Google Scholar 

  • Yakch TL, Anderson RE. In vivo studies on intracellular pH, focal flow, and vessel diameter in the cat cerebral cortex: Effects of altered CO2 and electrical stimulation. J Cereb Blood Flow Metab 1987: 7: 332–341

    Article  Google Scholar 

  • Yamashita K, Eguchi Y, Kajiwara K, et al.: Mild hypothermia ameliorates ubiquitin synthesis and prevents delayed neuronal death in the gerbil hippocampus. Stroke 1991: 22: 1574–1581.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi H, Fukuyama H, Nagahama Y, et al. Uncoupling of oxygen and glucose metabolism in persistent crossed cerebellar diaschisis. Stroke 1999: 30: 1424–1428.

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Ikeda Y, Kobayshi S, et al. The outcome with barbiturate therapy in severe head injuries. In: Intracranial Pressure VI, Miller JD, Teasdale GM, Rowan JO, Galvraith SL, Mendelow AD (eds), Springer Verlag, Berlin, Heidelberg 1986: 769–773.

    Chapter  Google Scholar 

  • Yokote H, Itakura T, Nakai K, et al. A role of the central catecholamine neuron in cerebral circulation. J Neurosurg 1986: 65: 370–375

    Article  CAS  PubMed  Google Scholar 

  • Yonas H, Darby JM, Marks EC, et al. CBF measured by Xe-CT: Approach to analysis and normal values. J Cereb Blood Flow Metab 1991: 11: 716–725

    Article  CAS  PubMed  Google Scholar 

  • Yonas H, Smith HA, Durham SR, et al. Increased stroke risk predicted by compromized cerebral blood flow reactivity. J Neurosurg 1993: 79: 483–489.

    Article  CAS  PubMed  Google Scholar 

  • Young RS, Olenginski TP, Yagel SK, Towfighi J. The effect of graded hypothermia on hypoxic-ischaemic brain damage: a neuropathologic study in the neonate rat. Stroke 1983: 14: 929–934.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of the dynamic cerebral autoregulation in human. Am J Physiol 1998: 274: H233–241.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cold, G.E., Dahl, B.L. (2002). Regulation of cerebral blood flow (CBF). In: Topics in Neuroanaesthesia and Neurointensive Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04845-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04845-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07537-7

  • Online ISBN: 978-3-662-04845-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics