Skip to main content

On the Construction of Size-Extensive Effective Hamiltonians for Time-Independent and Time-Dependent Quasi-Degenerate Systems

  • Conference paper
Many-Body Methods in Quantum Chemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 52))

Abstract

The paramount importance of maintaining size-extensivity, i.e. of ensuring the correct scaling behaviour of all computed extensive properties (such as energy) with number of particles, for many-body systems is now widely appreciated [1–3]. The earliest many-body perturbative formulation of Bruckner, Goldstone and Hubbard [4] took account of the size-extensivity for the energy of closed shell many-fermion systems by proving the now famous Linked Cluster Theorem. Subsequently, such a theorem was formulated within a non-perturbative framework also [5]. The generalization encompassing open-shell systems followed later, both in the perturbative [6] and the non-perturbative [7] contexts. It became increasingly clear that size-extensivity is essential not only for computing total energies per se for open-shell systems (as is encountered in generating potential surfaces) but also for energy differences (such as ionization potential, electron affinity, excitation energy or Auger energies). What seems not to have been realized that widely yet is the fact that size-extensivity is equally important for treating time-dependent problems involving many-body systems. Size-extensive formulations would bring out the essentially localized nature of interactions and would aid in the proper description of fragmentation and combination of the reacting species as they evolve in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Primas H (1965) In: Sinanoglu O (ed) Modern Quantum Chemistry. Acad. Press, N.Y.

    Google Scholar 

  2. Kutzelnigg W (1977) In: Schaeffer H.F. (ed.) Modem Theoretical Chemisry, Plenum, N.Y.

    Google Scholar 

  3. Bartlett R J (1981) Ann Rev Phys Chem 32:359.

    Article  CAS  Google Scholar 

  4. Chowdhuri R, Mukherjee D, Prasad M D (in press) In: Mukherjee D (ed) Aspects of Many Body Effects in Molecules and Extended Systems. Springer, Heidelberg.

    Google Scholar 

  5. Bruckner K A (1955) Phys Rev 97:1353.

    Article  Google Scholar 

  6. Goldstone J (1957) Proc Roy Soc A239:267.

    Google Scholar 

  7. Hubbard J (1957) Proc Roy Soc A240:539

    Google Scholar 

  8. Coster F (1958) Nucl Phys 7:421.

    Article  Google Scholar 

  9. Coster F, Kümmel H (1960) Nucl Phys 17:477.

    Article  Google Scholar 

  10. Cizek J (1966) J Chem Phys 45:4265.

    Google Scholar 

  11. Cizek J (1969) Adv Chem Phys 14:35.

    Article  CAS  Google Scholar 

  12. Brandow B (1967) Rev Mod Phys 39:771.

    Article  CAS  Google Scholar 

  13. Kuo T T S, Lee S Y, Ratcliffe K F (1971) Nucl Phys A176:65.

    Google Scholar 

  14. Johnson M, Baranger B (1971) Ann Phys 62:172.

    Article  Google Scholar 

  15. Lindgren I (1974) J Phys B7:2441.

    Google Scholar 

  16. Banerjee A, Mukherjee D, Simons J (1982) J Chem Phys 76:1979, 1995.

    Article  CAS  Google Scholar 

  17. Mukherjee D, Moitra R K, Mukhopadhyay A (1975) Mol Phys 30:1861.

    Article  CAS  Google Scholar 

  18. Mukherjee D, Moitra R K, Mukhopadhyay A (1977) Mol Phys 33:955.

    Article  CAS  Google Scholar 

  19. Mukhopadyay A, Moitra R K and Mukherjee D (1979) J Phys B 12:1.

    Article  Google Scholar 

  20. Mukherjee D (1979) Pramana 12:203.

    Article  CAS  Google Scholar 

  21. Haque A and Mukherjee D (1984) J Chem Phys 80:5058.

    Article  CAS  Google Scholar 

  22. Offerman R, Ey W, Kümmel H (1976) Nucl Phys A273:369.

    Google Scholar 

  23. Offermann R (1976) Nucl Phys A273:349.

    CAS  Google Scholar 

  24. Ey W (1978) Nucl Phys A296:189.

    CAS  Google Scholar 

  25. Lindgren I (1978) Int J Quantum Chem S12:33.

    Google Scholar 

  26. Jeziorski B, Monkhorst H J (1981) Phys Rev A24:1668.

    Google Scholar 

  27. Kutzelnigg W (1982) J Chem Phys 77:3081.

    Article  CAS  Google Scholar 

  28. Kutzelnigg W, Koch S (1983) J Chem Phys 79:4315.

    Article  CAS  Google Scholar 

  29. Bloch C (1958) Nucl Phys 6:329.

    Article  CAS  Google Scholar 

  30. See e.g. Mukherjee D (1986) Int J Quantum Chem S 20:409 where the development under discussion was first used to derive a size-extensive H eff for a general model space.

    Article  CAS  Google Scholar 

  31. Mukherjee D (1988) In: Arponen J, Bishop R F, Manninen M (eds) Condensed Matter Theory, Vol. 3, Plenum N.Y.

    Google Scholar 

  32. Magnus W (1954) Comm Appl Math 7:649.

    Google Scholar 

  33. Pechukas P, Light JC (1966) J Chem Phys 44:3897.

    Article  Google Scholar 

  34. Wei J, Norman E (1963) J Math Phys 4:575.

    Article  Google Scholar 

  35. See, e.g. Wolf F, Korsch H J (1988) Phys Rev A 37:1934.

    Article  Google Scholar 

  36. Monkhorst H J (1977) Int J Quantum Chem S11:421.

    Google Scholar 

  37. Hoodbhoy P, Negele J W (1978) Phys Rev C18:2380.

    Google Scholar 

  38. Schonhammer K, Gunnarsson O (1978) Phys Rev C18:660.

    Google Scholar 

  39. Sebastian K L (1985) Phys Rev B31:6976.

    Google Scholar 

  40. Prasad M D (1988) J Chem Phys 88:7005.

    Article  CAS  Google Scholar 

  41. Kvasnicka V (1981) Chem Phys Lett 79:89.

    Article  CAS  Google Scholar 

  42. Pal S, Prasad M D, Mukherjee D (1984) Theoret Chim Acta 66:311.

    Article  CAS  Google Scholar 

  43. Haque A, Kaldor U (1986) Int J Quantum Chem 29:425.

    Article  CAS  Google Scholar 

  44. Schucan T H, Weidenmüller H A (1972) Ann Phys 73:108.

    Article  CAS  Google Scholar 

  45. Schucan T H, Weidenmüller H A (1973) Ann Phys 76:483.

    Article  Google Scholar 

  46. Hose G, Kaldor U (1979) J Phys B12:3827; (1980) Phys Scripta 21:357.

    Google Scholar 

  47. Hose G, Kaldor U (1981) Chem Phys 62:419.

    Article  Google Scholar 

  48. Hose G, Kaldor U (1982) J Phys Chem 86:2133.

    Article  CAS  Google Scholar 

  49. Mukherjee D (1986) Proc Ind Acad Sci 96:415.

    Google Scholar 

  50. Mukherjee D (1986) Chem Phys Lett 125:207.

    Article  CAS  Google Scholar 

  51. Lindgren I, Mukherjee D (1987) Phys Rep 151:93.

    Article  CAS  Google Scholar 

  52. Kutzelnigg W, Mukherjee D, Koch S (1987) J Chem Phys 87:5902.

    Article  CAS  Google Scholar 

  53. Mukherjee D, Kutzelnigg W, Koch S (1987) J Chem Phys 87:5911.

    Article  CAS  Google Scholar 

  54. Sinha D, Mukhopadhyay S, Mukherjee D (1986) Chem Phys Lett 129:369.

    Article  CAS  Google Scholar 

  55. Pal S, Rittby M, Bartlett R J, Sinha S, Mukherjee D (1987) Chem Phys Lett 137:273.

    Article  CAS  Google Scholar 

  56. Pal S, Rittby M, Bartlett R J, Sinha S, Mukherjee D (1988) J Chem Phys 88:4357.

    Article  CAS  Google Scholar 

  57. Kaldor U (1988) In: Arponen J, Bishop R F, Manninen M (eds). Condensed Matter Theory, Vol 3, Plenum, N.Y.

    Google Scholar 

  58. Ben-Shlomo S, Kaldor U (1988) J Chem Phys 89:956.

    Article  CAS  Google Scholar 

  59. Koch S, Mukherjee D (1988) Chem Phys Lett 145:321.

    Article  CAS  Google Scholar 

  60. Koch S (in press) In: Mukherjee D (ed) Aspects of Many Body Effects in Molecules and Extended Systems. Springer, Heidelberg.

    Google Scholar 

  61. Chowdhuri R, Mukherjee D, submitted to Chem Phys Lett.

    Google Scholar 

  62. See also, ref. 3 for an early discussion of the problem.

    Google Scholar 

  63. Sinha D, Mukhopadyay S, Prasad M D, Mukherjee D (1986) Chem Phys Lett 125:213.

    Article  CAS  Google Scholar 

  64. Sinha D, Mukhopadhyay S, Chowdhuri R, Mukherjee D (in press) Chem Phys lett.

    Google Scholar 

  65. Bieri G, Schmelzer A, Asbrink L, Jonsson M (1980) Chem Phys 49:213.

    Article  CAS  Google Scholar 

  66. Weightman P, Thomas TD, Jennison D R (1983) J Chem Phys 78:1652.

    Article  CAS  Google Scholar 

  67. See, the last ref. of 6(e).

    Google Scholar 

  68. See also Guha S, Chowdhuri R, Mukherjee D (in press) In: Keller J (ed) Condensed Matter Theory, Vol. 4. Plenum, N.Y. for a concise discussion of these problems and the related formulations.

    Google Scholar 

  69. Nauts A, Wyatt R E (1983) Phys Rev Lett 51:2238.

    Article  CAS  Google Scholar 

  70. Voth G A, Marcus R A (1986) J Chem Phys 84:2254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chowdhuri, R., Guha, S., Sinha, D., Mukherjee, D. (1989). On the Construction of Size-Extensive Effective Hamiltonians for Time-Independent and Time-Dependent Quasi-Degenerate Systems. In: Kaldor, U. (eds) Many-Body Methods in Quantum Chemistry. Lecture Notes in Chemistry, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93424-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93424-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51027-7

  • Online ISBN: 978-3-642-93424-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics